Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 050401    DOI: 10.1088/0256-307X/34/5/050401
GENERAL |
Regular Magnetic Black Hole Gravitational Lensing
Jun Liang**
School of Arts and Sciences, Shannxi University of Science and Technology, Xi'an 710021
Cite this article:   
Jun Liang 2017 Chin. Phys. Lett. 34 050401
Download: PDF(505KB)   PDF(mobile)(469KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Bronnikov regular magnetic black hole as a gravitational lens is studied. In nonlinear electrodynamics, photons do not follow null geodesics of background geometry, but move along null geodesics of a corresponding effective geometry. To study the Bronnikov regular magnetic black hole gravitational lensing in the strong deflection limit, the corresponding effective geometry should be obtained firstly. This is the most important and key step. We obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. The influence of the magnetic charge on the black hole gravitational lensing is also discussed.
Received: 17 January 2017      Published: 29 April 2017
PACS:  04.70.-s (Physics of black holes)  
  98.62.Sb (Gravitational lenses and luminous arcs)  
  11.25.-w (Strings and branes)  
Fund: Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/050401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/050401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Liang
[1]Schödel R et al 2002 Nature 419 694
[2]Schneider P, Ehlers J and Falco E E 1992 Gravitational Lenses (Berlin: Springer-Verlag)
[3]Bozza V 2002 Phys. Rev. D 66 103001
[4]Virbhadra K S and Ellis G F R 2000 Phys. Rev. D 62 084003
[5]Virbhadra K S and Ellis G F R 2002 Phys. Rev. D 65 103004
[6]Frittelli S, Kling T P and Newman E T 2000 Phys. Rev. D 61 064021
[7]Darwin C 1959 Proc. Roy. Soc. London A 249 180
[8]Luminet J P 1979 Astron. Astrophys. 75 228
[9]Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University Press)
[10]Ohanian H C 1987 Am. J. Phys. 55 428
[11]Bozza V et al 2001 Gen. Relativ. Gravitation 33 1535
[12]Eiroa E F and Sendra C M 2011 Class. Quantum Grav. 28 085008
[13]Eiroa E F and Sendra C M 2012 Phys. Rev. D 86 083009
[14]Eiroa E F and Sendra C M 2013 Phys. Rev. D 88 103007
[15]Eiroa E F 2014 Eur. Phys. J. C 74 3171
[16]Whisker R 2005 Phys. Rev. D 71 064004
[17]Majumdar A S and Mukherjee N 2005 Int. J. Mod. Phys. D 14 1095
[18]Eiroa E F and Sendra C M 2005 Phys. Rev. D 71 083010
[19]Eiroa E F 2006 Phys. Rev. D 73 043002
[20]Zhao S S and Xie Y 2016 J. Cosmol. Astropart. Phys. 2016 007
[21]Chen S and Jing J 2009 Phys. Rev. D 80 024036
[22]Cheng H and Man J 2011 Class. Quantum Grav. 28 015001
[23]Ding C, Kang S and Chen C Y 2011 Phys. Rev. D 83 084005
[24]Ding C and Jing J 2011 J. High Energy Phys. 1110 052
[25]Ding C et al 2013 Phys. Rev. D 88 104007
[26]Tsukamoto N et al 2014 Phys. Rev. D 90 064043
[27]Wei S W, Yang K and Liu Y X 2015 Eur. Phys. J. C 75 253
[28]Sotani H and Miyamoto U 2015 Phys. Rev. D 92 044052
[29]Wei S W, Liu Y X and Fu C E 2015 Adv. High Energy Phys. 2015 454217
[30]Bhadra A 2003 Phys. Rev. D 67 103009
[31]Sarkar K and Bhadra A 2006 Class. Quantum Grav. 23 6101
[32]Mukherjee N and Majumdar A S 2007 Gen. Relativ. Gravitation 39 583
[33]Ghosh T and SenGupta S 2010 Phys. Rev. D 81 044013
[34]Gyulchev G N and Stefanov I Z 2013 Phys. Rev. D 87 063005
[35]Chen S and Jing J 2015 J. Cosmol. Astropart. Phys. 10 002
[36]Huang Y, Chen S and Jing J 2016 Eur. Phys. J. C 76 594
[37]Bozza V and Mancini L 2004 Gen. Relativ. Gravitation 36 435
[38]Bardeen J 1968 Proccedings GR5 (Tiflis USSR 1968)
[39]Ayón E and Ayón-Beato E 2000 Phys. Lett. B 493 149
[40]Hayward S A 2006 Phys. Rev. Lett. 96 031103
[41]Nicolini P, Smailagic A and Spallucci E 2006 Phys. Lett. B 632 547
[42]Ansoldi S et al 2007 Phys. Lett. B 645 261
[43]Ayón-Beato E and García A 1998 Phys. Rev. Lett. 80 5056
[44]Bronnikov K A and Fabris J C 2006 Phys. Rev. Lett. 96 251101
[45]Bronnikov K A 2001 Phys. Rev. D 63 044005
[46]Dymnikova I 2004 Class. Quantum Grav. 21 4417
[47]Elizalde E and Hildebrandt S R 2002 Phys. Rev. D 65 124024
[48]Borde A 1994 Phys. Rev. D 50 3692
[49]Borde A 1997 Phys. Rev. D 55 7615
[50]Mars M, Martí-Parts M and Senovilla J M M 1996 Phys. Lett. A 218 147
[51]Zaslavskii O B 2009 Phys. Rev. D 80 064034
[52]Zaslavskii O B 2010 Phys. Lett. B 688 278
[53]Balart L 2010 Phys. Lett. B 687 280
[54]Moreno C and Sarbach O 2003 Phys. Rev. D 67 024028
[55]Fernando S and Correa J 2012 Phys. Rev. D 86 064039
[56]Dymnikova I and Galaktionov E 2005 Class. Quantum Grav. 22 2331
[57]Myung Y S, Kim Y W and Park Y J 2005 J. High Energy Phys. 0502 012
[58]Myung Y S, Kim Y W and Park Y J 2008 Phys. Lett. B 659 832
[59]Myung Y S, Kim Y W and Park Y J 2009 Gen. Relativ. Gravitation 41 1051
[60]Flachi A and Lemos J P S 2013 Phys. Rev. D 87 024034
[61]Li J, Hong M and Lin K 2013 Phys. Rev. D 88 064001
[62]Ansoldi S 2008 arXiv:gr-qc/0802.0330
[63]Gatiérrez S A, Dudley A and Plebańsky J 1981 J. Math. Phys. 22 2835
[64]Novello M et al 2000 Phys. Rev. D 61 04500
[65]Weinberg S 1972 Gravition and Cosmology: Principles and Applications of the General Theory of Relativity (New York: Wiley)
[66]Gillessen S et al 2009 Astrophys. J. Lett. 707 L114
[67]Carter B 1968 Phys. Rev. 174 1559
[68]Hawhing S W and Ellis G F 1973 The Large Scale Structure of Space-Time (Cambridge: Cambridge University Press)
[69]Richstone D et al 1998 Nature 395 A14
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 050401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 050401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 050401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 050401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 050401
[6] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 050401
[7] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 050401
[8] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 050401
[9] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 050401
[10] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 050401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 050401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 050401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 050401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 050401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 050401
Viewed
Full text


Abstract