Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 050201    DOI: 10.1088/0256-307X/34/5/050201
GENERAL |
Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk
Jian Liu1,2**, Bao-He Li1, Xiao-Song Chen2
1School of Science, Beijing Technology and Business University, Beijing, 100048
2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Jian Liu, Bao-He Li, Xiao-Song Chen 2017 Chin. Phys. Lett. 34 050201
Download: PDF(863KB)   PDF(mobile)(862KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function $g(t) \sim t^{\gamma}$, $0 \le \gamma < 2$, and the probability density function $\omega(t)$ of a particle's waiting time $t$ follows a power law form for large $t$: $\omega(t) \sim t^{-(1+\alpha)}$, $0 < \alpha < 1$. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent $\gamma$ and the long-tailed index $\alpha$ of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.
Keywords:       
Received: 06 March 2017      Published: 29 April 2017
PACS:  02.50.Ey (Stochastic processes)  
  05.40.Fb (Random walks and Levy flights)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11605003 and 11547231.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/050201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/050201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Liu
Bao-He Li
Xiao-Song Chen
[1]Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167
[2]Scher H and Montroll E W 1975 Phys. Rev. B 12 2455
[3]Bouchaud J P and Georges A 1990 Phys. Rep. 195 127
[4]Metzler R and Klafter J 2000 Phys. Rep. 339 1
[5]Metzler R, Jeon J H, Cherstvy A G and Barkai E 2014 Phys. Chem. Chem. Phys. 16 24128
[6]Zaburdaev V, Denisov S and Klafter J 2015 Rev. Mod. Phys. 87 483
[7]Iyengar N et al 1996 Am. J. Physiol. 271 R1078
[8]Blumen A, Zumofen G and Klafter J 1989 Phys. Rev. A 40 3964
[9]Meerschaert M M, Nane E and Xiao Y 2009 Stat. Probab. Lett. 79 1194
[10]Liu J and Bao J D 2013 Physica A 392 612
[11]Liu J and Bao J D 2013 Chin. Phys. Lett. 30 020202
[12]Liu J et al 2016 Acta Phys. Sin. 65 160502 (in Chinese)
[13]Klafter J and Sokolov I M 2011 First Steps in Random Walks: From Tools to Applications (Oxford: Oxford University Press)
[14]Shlesinger M F, Klafter J and Wong Y M 1982 J. Stat. Phys. 27 499
[15]Shlesinger M F, West B J and Klafter J 1987 Phys. Rev. Lett. 58 1100
[16]Klafter J, Blumen A and Shlesinger M F 1987 Phys. Rev. A 35 3081
[17]Barkai E, Aghion E and Kessler D A 2014 Phys. Rev. X 4 021036
Related articles from Frontiers Journals
[1] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 050201
[2] Juanjuan Liu, A. T. Savici, G. E. Granroth, K. Habicht, Y. Qiu, Jin Hu, Z. Q. Mao, Wei Bao. A Triplet Resonance in Superconducting Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$[J]. Chin. Phys. Lett., 2018, 35(12): 050201
Viewed
Full text


Abstract