GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Nucleosynthesis in Advection-Dominated Accretion Flow onto a Black Hole |
Jiang Zhang1,2**, Ren-Yi Ma3**, Hong-Jie Li4, Bo Zhang5 |
1Department of Mathematics and Science, Hebei GEO University, Shijiazhuang 050016 2Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 3Department of Astronomy, Xiamen University, Xiamen 361005 4School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050016 5Department of Physics, Hebei Normal University, Shijiazhuang 050016
|
|
Cite this article: |
Jiang Zhang, Ren-Yi Ma, Hong-Jie Li et al 2017 Chin. Phys. Lett. 34 049701 |
|
|
Abstract Nucleosynthesis in advection-dominated accretion flow (ADAF) onto a black hole is proposed to be an important role in chemical evolution around compact stars. We investigate the nucleosynthesis in ADAF relevant for a black hole of low mass, different from that of the self-similar solution. In particular, the presence of supersolar metal mass fractions of some isotopes seems to be associated with the known black hole nucleosynthesis in ADAF, which offers further evidence of diversity of the chemical enrichment.
|
|
Received: 15 December 2016
Published: 21 March 2017
|
|
PACS: |
97.10.Cv
|
(Stellar structure, interiors, evolution, nucleosynthesis, ages)
|
|
26.40.+r
|
(Cosmic ray nucleosynthesis)
|
|
97.10.Tk
|
(Abundances, chemical composition)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11547041, 11403007, 11673007, 11643007, 11333004, U1531130, 11673059, 11390374 and 11521303, and the Chinese Academy of Sciences under Grant Nos KJZD-EW-M06-01 and QYZDB-SSW-SYS001. |
|
|
[1] | Burbidge M, Burbidge G R, Fowler W and Hoyle F 1957 Rev. Mod. Phys. 29 547 | [2] | Busso M, Gallino R and Wasserburg G J 1999 Annu. Rev. Astron. Astrophys. 37 239 | [3] | Arnould M, Goriely S and Takahashi K 2007 Phys. Rep. 450 97 | [4] | Han Z and Podsiadlowski Ph 2004 Mon. Not. R. Astron. Soc. 350 1301 | [5] | Wang B and Han Z 2012 New Astron. Rev. 56 122 | [6] | Shakura N I and Sunyaev R A 1973 Astron. Astrophys. 24 337 | [7] | Narayan R and Yi I 1994 Astrophys. J. 428 L13 | [8] | Narayan R, Kato S and Honma F 1997 Astrophys. J. 476 49 | [9] | Banerjee I and Mukhopadhyay B 2013 Astrophys. J. 778 8 | [10] | Mukhopadhyay B and Chakrabarti S K 2000 Astron. Astrophys. 353 1029 | [11] | Surman R McLaughlin G C and Sabbatino N 2011 Astrophys. J. 743 155 | [12] | Hu T and Peng Q H 2008 Astrophys. J. 681 96 | [13] | Yuan F, Quataert E and Narayan R 2003 Astrophys. J. 598 301 | [14] | Timmes F X 1999 Astrophys. J. Suppl. Ser. 124 241 | [15] | Timmes F X, Hoffman R D and Woosley S E 2000 Astrophys. J. Suppl. Ser. 129 377 | [16] | Savaglio S, Rau A, Greiner J et al 2012 Mon. Not. R. Astron. Soc. 420 627 | [17] | Xu Y D and Cao X 2010 Astrophys. J. 716 1423 | [18] | Zhang H, Wang Y, Yuan F, Ding F, Luo X and Peng Q H 2009 Astron. Astrophys. 502 419 | [19] | Zhang J, Wang B, Zhang B and Han Z 2012 Chin. Phys. Lett. 29 019701 | [20] | Wang J T and Song H F 2016 Chin. Phys. Lett. 33 099702 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|