CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors |
Xiang-Mi Zhan1, Mei-Lan Hao1,4, Quan Wang1, Wei Li1, Hong-Ling Xiao1,2,3, Chun Feng1,3, Li-Juan Jiang1,3, Cui-Mei Wang1,2,3, Xiao-Liang Wang1,2,3**, Zhan-Guo Wang1,3 |
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049 3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083 4Department of Electro-mechanics, Handan College, Handan 056005
|
|
Cite this article: |
Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang et al 2017 Chin. Phys. Lett. 34 047301 |
|
|
Abstract Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AlInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current ($V_{\rm DS}=0.5$ V) shows a clear decrease of 69 $\mu$A upon the introduction of 1 $\mu$molL$^{-1}$ ($\mu$M) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 $\mu$A. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.
|
|
Received: 18 January 2017
Published: 21 March 2017
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
73.40.Ns
|
(Metal-nonmetal contacts)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Sciences Foundation of China under Grant No 61334002, and the National Science and Technology Major Project. |
|
|
[1] | Kim D S, Park H J, Jung H M, Shin J K, Choi P, Lee J H and Lim G 2004 Jpn. J. Appl. Phys. 43 3855 | [2] | Skogerboe K J 1993 Anal. Chem. 65 416 | [3] | Steinhoff G, Purrucker O, Tanaka M, Stutzmann M and Eickhoff M 2003 Adv. Funct. Mater. 13 841 | [4] | Wang X H, Wang X L, Feng C, Yang C B, Wang B Z, Ran J X, Xiao H L, Wang C M and Wang J X 2008 Microelectron. J. 39 20 | [5] | Wang X H, Wang X L, Feng C, Xiao H L, Yang C B, Wang J X, Wang B Z, Ran J X and Wang C M 2008 Chin. Phys. Lett. 25 266 | [6] | Feng C, Wang X L, Yang C B, Xiao H L, Zhang M L, Jiang L J, Tang J, Hu G X, Wang J X and Wang Z G 2008 Chin. Phys. Lett. 25 3025 | [7] | Mehandru R, Luo B, Kang B S, Kim J, Ren F, Pearton S J, Pan C C, Chen G T and Chyi J I 2004 Solid-State Electron. 48 351 | [8] | Kang B S, Wang H T, Ren F, Gila B P, Abernathy C R, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 012110 | [9] | Kang B S, Ren F, Kang M C, Lofton C, Tan W H, Pearton S J, Dabiran A, Osinsky A and Chow P P 2005 Appl. Phys. Lett. 86 173502 | [10] | Wang H T, Kang B S, Chancellor T F, Jr, Lele T P, Tseng Y, Ren F, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 042114 | [11] | Cheng J J, Li J D, Miao B, Wang J N, Wu Z Y, Wu D M and Pei R J 2014 Appl. Phys. Lett. 105 083121 | [12] | Kang B S, Wang H T, Lele T P, Tseng Y, Ren F, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 112106 | [13] | Li J D, Cheng J J, Miao B, Wei X W, Xie J, Zhang J C, Zhang Z Q and Wu D M 2014 J. Micromech. Microeng. 24 075023 | [14] | Wang Y and Lu W 2011 Phys. Status Solidi A 208 1623 | [15] | Kang B S, Pearton S J, Chen J J, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2006 Appl. Phys. Lett. 89 122102 | [16] | Thapa R, Alur S, Kim K, Tong F, Sharma Y, Kim M, Ahyi C, Dai J, Hong J W, Bozack M, Williams J, Son A, Dabiran A and Park M 2012 Appl. Phys. Lett. 100 232109 | [17] | Kohn E and Medjdoub F 2007 Int. Workshop Phys. Semiconductor Devices (Mumbai India 16–20 December 2007) p 311 | [18] | Brazzini T, Bengoechea-Encabo A, Sánchez-García M A and Calle F 2013 Sens. Actuators B 176 704 | [19] | Weng W Y, Chang S J, Hsueh T J, Hsu C L, Li M J and Lai W C 2009 Sens. Actuators B 140 139 | [20] | Jia X L, Huang X Y, Tang Y, Yang L H, Chen D J, Lu H, Zhang R and Zheng Y D 2016 IEEE Electron. Dev. Lett. 37 913 | [21] | Huang Y L, Zhang L, Cheng Z, Zhang Y, Ai Y J, Zhao Y B, Lu H X, Wang J X and Li J M 2016 J. Semicond. 37 114002 | [22] | Cui L, Yin H B, Jiang L J, Wang Q, Feng C, Xiao H L, Wang C M, Gong J M, Zhang B, Li B Q, Wang X L and Wang Z G 2015 J. Semicond. 36 103002 | [23] | Xiao Y, Lai R Y and Plaxco K W 2007 Nat. Protoc. 2 2875 | [24] | Biener M M, Biener J and Friend C M 2005 Langmuir 21 1668 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|