Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 043201    DOI: 10.1088/0256-307X/34/4/043201
ATOMIC AND MOLECULAR PHYSICS |
Controlling Three-Dimensional Electron–Electron Correlation via Elliptically Polarized Intense Laser Field
Jian-Xing Hao1, Xiao-Lei Hao1**, Wei-Dong Li1, Shi-Lin Hu2,3, Jing Chen2,3
1Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006
2HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871
3Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
Jian-Xing Hao, Xiao-Lei Hao, Wei-Dong Li et al  2017 Chin. Phys. Lett. 34 043201
Download: PDF(656KB)   PDF(mobile)(646KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The three-dimensional electron–electron correlation in an elliptically polarized laser field is investigated based on a semiclassical model. Asymmetry parameter $\alpha$ of the correlated electron momentum distribution is used to quantitatively describe the electron–electron correlation. The dependence of $\alpha$ on ellipticity $\varepsilon$ is totally different in three directions. For the $z$ direction (major polarization direction), $\alpha$ first increases and reaches a maximum at $\varepsilon=0.275$, then it decreases quickly. For the $y$ direction in which the laser field is always absent, the ellipticity has a minor effect, and the asymmetry parameter fluctuates around $\alpha=-0.15$. However, for the $x$ direction (minor polarization direction), $\alpha$ increases monotonously with ellipticity though starts from the same value as in the $y$ direction when $\varepsilon=0$. The behavior of $\alpha$ in the $x$ direction actually indicates a transformation from the Coulomb interaction dominated correlation to the laser field dominated correlation. Therefore, our work provides an efficient way to control the three-dimensional electron–electron correlation via an elliptically polarized intense laser field.
Received: 19 January 2017      Published: 21 March 2017
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  32.80.Fb (Photoionization of atoms and ions)  
  34.50.Rk (Laser-modified scattering and reactions)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Supported by the National Key Program for S&T Research and Development under Grant No 2016YFA0401100, the National Basic Research Program of China under Grant No 2013CB922201, and the National Natural Science Foundation of China under Grant Nos 11504215, 11374197, 11334009 and 11425414.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/043201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/043201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Xing Hao
Xiao-Lei Hao
Wei-Dong Li
Shi-Lin Hu
Jing Chen
[1]Becker W, Liu X J, Ho P J and Eberly J H 2012 Rev. Mod. Phys. 84 1011
[2]Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R and Schmidt-Böcking H 2000 Phys. Rep. 330 95
[3]Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M and Dörner R 2000 Nature 405 658
[4]Moshammer R, Feuerstein B, Schmitt W, Dorn A, Schröter C D and Ullrich J 2000 Phys. Rev. Lett. 84 447
[5]Feuerstein B, Moshammer R, Fischer D, Dorn A, Schroter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hohr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G and Sandner W 2001 Phys. Rev. Lett. 87 043003
[6]Corkum P B 1993 Phys. Rev. Lett. 71 1994
[7]Perelomov A M, Popov V S and Terent'ev M V 1993 Sov. Phys. JETP 24 207
[8]Liu Y, Rudenko A, Tschuch S, Siegel M, Morgner U, Moshammer R and Ullrich J 2008 Phys. Rev. Lett. 101 053001
[9]Rudenko A, Jesus V L B D, Ergler T, Zrost K, Feuerstein B, Schröter C D, Moshammer R and Ullrich J 2007 Phys. Rev. Lett. 99 263003
[10]Staudte A, Ruiz C, Schoffler M, Schossler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dörner R 2007 Phys. Rev. Lett. 99 263002
[11]Bergues B, Kübel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J and Kling M F 2012 Nat. Commun. 3 813
[12]Weckenbrock M, Hattass M, Czasch A, Jagutzki O, Schmidt L, Weber T, Roskos H, Löffler T, Thomson M and Dörner R 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L449
[13]Moshammer R, Feuerstein B, López-Urrutia, Crespo J, Deipenwisch J, Dorn A, Fischer D, Hohr C, Neumayer P, Schroter C D, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G and Sandner W 2002 Phys. Rev. A 65 035401
[14]Weckenbrock M, Becker A, Staudte A, Kammer S, Smolarski M, Bhardwaj V R, Rajner D M, Villeneuve D M, Corkum P B and Dörner R 2003 Phys. Rev. Lett. 91 123004
[15]Weckenbrock M, Zeidler D, Staudte A, Weber T, Schoffler M, Meckel M, Kammer S, Smolarski M, Jagutzki O, Bhardwaj V R, Rayner D M, Villeneuve D M, Corkum P B and Dörner R 2004 Phys. Rev. Lett. 92 213002
[16]Du Y G, Zhang Y P, Zuo C C, Li C B, Nie Z Q, Zheng H B, Shi M Z, Wang R M, Song J P, Lu K Q and Xiao M 2009 Phys. Rev. A 79 063839
[17]Chen H X, Qin M Z, Zhang Y Q, Zhang X, Wen F, Wen J M and Zhang Y P 2014 Laser Phys. Lett. 11 045201
[18]Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B and Zhang Y P 2014 Phys. Rev. A 90 043846
[19]Zhang Y P, Gan C L, Song J P, Yu X J, Ge H, Ma R Q, Li C S, Lu K Q and Eyler E E 2005 Chin. Phys. Lett. 22 1110
[20]Zhang Y P, Gan C L, Song J P, Yu X J, Ma R Q, Ge H, Jiang T, Lu K Q and Eyler E E 2005 Chin. Phys. Lett. 22 1114
[21]Hao X L, Wang G Q, Jia X Y, Li W D, Liu J and Chen J 2009 Phys. Rev. A 80 023408
[22]Hao X L, Li W D, Liu J and Chen J 2012 Chin. Phys. B 21 083304
[23]Delone N B and Krainov V P 1991 J. Opt. Soc. Am. B 8 1207
[24]Chen J, Liu J, Fu L B and Zheng W M 2000 Phys. Rev. A 63 011404(R)
[25]Landau L D and Lifshitz E M 1977 Quantum Mechanics (Oxford: Pergamon Press)
[26]Cohen J S 1982 Phys. Rev. A 26 3008
[27]Shaaran T, Nygren M T and Faria C F de M 2010 Phys. Rev. A 81 063413
[28]Ye F D and Liu J 2010 Phys. Rev. A 81 043402
[29]Hao X L, Chen J, Li W D, Wang B, Wang X and Becker W 2014 Phys. Rev. Lett. 112 073002
[30]Chen J, Kim J H and Nam C H 2003 J. Phys. B 36 691
[31]Hao X L, Li W D, Liu J and Chen J 2011 Phys. Rev. A 83 053422
[32]Jia X Y, Hao X L, Fan D, Li W D and Chen J 2013 Phys. Rev. A 88 033402
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 043201
[2] Yingbin Li, Lingling Qin, Aihua Liu, Ke Zhang, Qingbin Tang, Chunyang Zhai, Jingkun Xu, Shi Chen, Benhai Yu, and Jing Chen. Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field[J]. Chin. Phys. Lett., 2022, 39(9): 043201
[3] Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Xiao-Jun Liu. Nonadiabatic and Multielectron Effects in the Attoclock Experimental Scheme[J]. Chin. Phys. Lett., 2020, 37(4): 043201
[4] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 043201
[5] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 043201
[6] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 043201
[7] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 043201
[8] M. Salehi, S. Mirzanejad. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma[J]. Chin. Phys. Lett., 2017, 34(5): 043201
[9] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 043201
[10] Hong-Dan Zhang, Jing Guo, Yan Shi, Hui Du, Hai-Feng Liu, Xu-Ri Huang, Xue-Shen Liu, Jun Jing. Exploration of High-Harmonic Generation from the CS$_2$ Molecule by the Lewenstein Method in Two-Color Circularly Polarized Laser Field[J]. Chin. Phys. Lett., 2017, 34(1): 043201
[11] Xin-Hai Tu, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin. Phys. Lett., 2016, 33(09): 043201
[12] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 043201
[13] XIA Chang-Long, MIAO Xiang-Yang. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse[J]. Chin. Phys. Lett., 2015, 32(4): 043201
[14] WANG Chuan-Liang, SUN Ren-Ping, CHEN Yong-Ju, GONG Cheng, LAI Xuan-Yang, KANG Hui-Peng, QUAN Wei, LIU Xiao-Jun. Above-Threshold Ionization of Xenon by Chirped Intense Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(06): 043201
[15] CHENG Wen-Jing, ZHANG Shi-An, JIA Tian-Qing, FENG Dong-Hai, SUN Zhen-Rong. High-Resolution Selective Excitation of Resonance-Enhanced Multiphoton-Ionization Photoelectron Spectroscopy by Shaping Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(05): 043201
Viewed
Full text


Abstract