GENERAL |
|
|
|
|
Wide-Temperature-Range Dielectric Permittivity Measurement under High Pressure |
Zhen Yuan1,3, Jin-Long Zhu2,3**, Shao-Min Feng3, Chang-Chun Wang1, Li-Juan Wang2,3, Qing-Qing Liu3, Chang-Qing Jin3** |
1Department of Materials Science and Engineering, Linyi University, Linyi 276005 2Center for High Pressure Science and Technology Advanced Research, Beijing 100094 3National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Zhen Yuan, Jin-Long Zhu, Shao-Min Feng et al 2017 Chin. Phys. Lett. 34 040701 |
|
|
Abstract Two measurement systems are developed for in-situ dielectric property measurement under high pressure in a wide-temperature range from 77 K to 1273 K. The high-temperature system ranging from room temperature up to 1273 K is equipped with a hexahedron anvils press, while the low-temperature system ranging from liquid nitrogen temperature to normal condition is equipped using the piston cylinder setup with a specially designed sample chamber. Using these configurations, the dielectric property measurement of ferroelectric BaTiO$_{3}$ and multiferroic Tm$_{0.5}$Gd$_{0.5}$MnO$_{3}$ compounds are demonstrated, which proves the validity of the systems through the tuning of the polarization and phase transition boundary by high pressure. These two systems will be equally applicable to a wide variety of electronic and transport property measurements of insulators, semiconductors, as well as battery materials.
|
|
Received: 12 December 2016
Published: 21 March 2017
|
|
PACS: |
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2009CB623301. |
|
|
[1] | Kaatze U 2013 Meas. Sci. Technol. 24 012005 | [2] | Xu Z et al 2004 Ceram. Int. 30 1699 | [3] | Shusta V S, Prits I P and Guranich P P et al 2007 Condens. Matter Phys. 10 91 | [4] | Demazeau G 2002 J. Phys.: Condens. Matter 14 11031 | [5] | Zhu J L et al 2008 Appl. Phys. Lett. 92 242901 | [6] | Hemley R J 2000 Annu. Rev. Phys. Chem. 51 763 | [7] | Drickamer H G 1966 Gen. Introductory Chem. 70 952 | [8] | Xu Z et al 2001 Ferroelectrics 259 61 | [9] | Xu Z et al 2003 Mater. Sci. Eng. B 99 441 | [10] | Peng G et al 2013 Chem. Phys. Lett. 582 163 | [11] | Megaw H D 1945 Nature 155 484 | [12] | Haertling G H 1999 J. Am. Ceram. Soc. 82 797 | [13] | Jona F and Shirane G 1962 Ferroelectric Crystals, Pergamon Press, London | [14] | Kay H F and Vousden P 1949 Philos. Mag. 40 1019 | [15] | Schmid H 1994 Ferroelectrics 162 317 | [16] | Fiebig M, Lottermoser Th, Frohlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818 | [17] | Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55 | [18] | Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J and Fiebig M 2004 Nature 430 541 | [19] | Wang L J, Feng S M, Zhu J L, Yu R C and Jin C Q 2007 Appl. Phys. Lett. 91 172502 | [20] | Zhu J L, Xiao C J, Chi Z H, Feng S M, Li F Y, Jin C Q, Deng X Y, Wang X H, Li L T, Dai Z H, Wang J and Xu Z 2006 Chin. Phys. Lett. 23 1631 | [21] | Zhu J L, Han W, Zhang H, Yuan Z, Wang X H, Li L T and Jin C Q 2012 J. Appl. Phys. 112 064110 | [22] | Li B R, Wang X H, Li L T, Zhou H, Liu X T, Han X Q, Zhang Y C, Qi X W and Deng X Y 2004 Mater. Chem. Phys. 83 23 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|