Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 038501    DOI: 10.1088/0256-307X/34/3/038501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes
Xue-Hui Tao**, Yong Yang
Department of Signal and Control Engineering, Soochow University, Suzhou 215000
Cite this article:   
Xue-Hui Tao, Yong Yang 2017 Chin. Phys. Lett. 34 038501
Download: PDF(839KB)   PDF(mobile)(836KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The photometric characteristics of high-power white light-emitting diode (LED) devices are investigated. A theoretical model for the luminous efficacy of high-power white LED devices and LED systems is proposed. With the proposed theoretical model, the mechanism of the luminous efficacy decrease is explained. Meanwhile, the model can be used to estimate the luminous efficacy of LEDs under general operation conditions, such as different operation temperatures and injection currents. The wide validity of the luminous efficacy model is experimentally verified through the measurements of different types of LEDs. The experimental results demonstrate a high estimation accuracy. The proposed models not only can be applied to estimate the LED photometric performance, but also is helpful for reliability research of LEDs.
Received: 29 November 2016      Published: 28 February 2017
PACS:  85.60.Jb (Light-emitting devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  02.30.Cj (Measure and integration)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51307113 and 51407124, and the Natural Science Foundation of Jiangsu Province under Grant No BK20130307.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/038501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/038501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Hui Tao
Yong Yang
[1]Chiu H J, Lo Y K, Lee T P, Mou S C and Huang H M 2009 IEEE Trans. Ind. Electron. 56 2793
[2]Lv X, Loo K H, Lai Y M and Tse C K 2014 IEEE Trans. Ind. Electron. 61 4665
[3]Chiu H J, Lo Y K, Chen J T, Cheng S J, Lin C Y and Mou S C 2010 IEEE Trans. Ind. Electron. 57 735
[4]Arik M, Petroski J and Weaver S 2002 IEEE 8th Intersoc. Conf. Thermal Thermomech. Phenomena Electron. Syst. (Orlando, Florida 28–31 May 2008) p 113
[5]Osvald J, Kuzmik J, Konstantinidis G, Lobotka P and Georgakilas A 2005 Microelectronic Eng. 81 181
[6]Tan S C 2010 IEEE Trans. Ind. Electron. 57 1342
[7]Biber C 2008 IEEE Semicond. Therm. Meas. Manage. Symp. (San Jose, California 16–20 March 2008) p 180
[8]Yu Y J, Zhang F H and Ni J J 2014 IEEE Trans. Ind. Electron. 61 2423
[9]Kim M H, Schubert M F, Dai Q, Kim J K and Schubert E F 2007 Appl. Phys. Lett. 91 183507
[10]Ling S C, Lu T C, Chang S P, Chen J R, Kou H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
[11]Yang Y, Cao X A and Yan C 2008 IEEE Trans. Electron. Devices 55 1771
[12]Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[13]Kim A Y, Götz W, Seigerwald D A, Wierer J J, Gardner N F, Sun J, Stockman S A, Martin P S, Krames M R, Kern R S and Steranka F M 2001 Phys. Status Solidi A 188 15
[14]Akita K, Kyono T, Yoshizumi Y, Kitabayashi H and Katayama K 2007 J. Appl. Phys. 101 033104
[15]Efremov A A, Bochkareva N I, Gorbunov R I, Larinovich D A and Shreter Yu G 2006 Phys. Semicond. Devices 40 605
[16]Rozhansky V and Zakheim D A 2006 Phys. Status Solidi C 3 2160
[17]Rozhansky V and Zakheim D A 2007 Phys. Status Solidi A 204 227
[18]Krames M R, Shchekin O B, Mueller-Mach R and Craford M G 2007 J. Display Technol. 3 160
[19]Mukai T, Yamada M and Nakamura S 1999 Jpn. J. Appl. Phys. 38 3976
[20]Schubert E F 2006 Light-Emitting Diodes 2nd edn (Cambridge: Cambridge University Press) chap 5 p 98
[21]Hui S Y R and Qin Y X 2009 IEEE Trans. Power Electron. 24 1967
[22]Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 058502
[23]Liu W, Zhao D G, Jiang D S, Chen P, Liu Z S et al 2015 Chin. Phys. B 24 127801
[24]Zhao Y K, Li Y F, Yun F et al 2015 Chin. Phys. B 24 056806
[25]Zhou X J, Zhang J, Li S T et al 2014 Chin. Phys. B 23 068502
[26]Rajabi K, Cao W Y, Hu X D et al 2015 Chin. Phys. Lett. 32 027802
[27]Chen H T, Tao X H and Hui S Y R 2012 IEEE Trans. Power Electron. 27 2176
[28]Farkas G, Vader Q V V, Poppe A and Bogn'ar G 2005 IEEE Trans. Compon. Packag. Technol. 28 45
[29]Sz'ekely V, Poppe A, Rencz M, Rosental M and Tesz'eri T 2000 Microelectron. Rel. 40 517
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 038501
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 038501
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 038501
[4] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 038501
[5] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 038501
[6] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 038501
[7] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 038501
[8] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 038501
[9] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 038501
[10] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 038501
[11] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 038501
[12] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 038501
[13] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 038501
[14] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 038501
[15] RAJABI Kamran, CAO Wen-Yu, SHEN Tihan , JI Qing-Bin, HE Juan, YANG Wei, LI Lei, LI Ding, WANG Qi, HU Xiao-Dong. The Influence of InGaN Interlayer on the Performance of InGaN/GaN Quantum-Well-Based LEDs at High Injections[J]. Chin. Phys. Lett., 2015, 32(02): 038501
Viewed
Full text


Abstract