CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells |
Yue Zhang1, Cao Yu2, Miao Yang2, Lin-Rui Zhang1, Yong-Cai He1, Jin-Yan Zhang2, Xi-Xiang Xu2, Yong-Zhe Zhang1**, Xue-Mei Song1, Hui Yan1** |
1College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 2Hanergy Thin Film Power, R & D Center, Chengdu 610200
|
|
Cite this article: |
Yue Zhang, Cao Yu, Miao Yang et al 2017 Chin. Phys. Lett. 34 038101 |
|
|
Abstract The key feature of amorphous/crystalline silicon heterojunction solar cells is extremely low surface recombination, which is related to superior passivation on the crystalline silicon wafer surface using thin hydrogenated amorphous silicon (a-Si:H) layers, leading to a high open-circuit voltage. In this work, a two-step method of a-Si:H passivation is introduced, showing excellent interface passivation quality, and the highest effective minority carrier lifetime exceeds 4500 μs. By applying a buffer layer deposited through pure silane plasma, the risk of film epitaxial growth and plasma damage caused by hydrogen diluted silane plasma is effectively reduced. Based on this, excellent passivation is realized through the following hydrogen diluted silane plasma process with the application of high density hydrogen. In this process, hydrogen diffuses to a-Si/c-Si interface, saturating residual dangling bonds which are not passivated by the buffer layer. Employing this two-step method, a heterojunction solar cell with an area of 239 cm$^{2}$ is prepared, yielding to open-circuit voltage up to 735 mV and total-area efficiency up to 22.4%.
|
|
Received: 23 November 2016
Published: 28 February 2017
|
|
PACS: |
81.05.Gc
|
(Amorphous semiconductors)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.jj
|
(Silicon solar cells)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61574009, 11274028, 11574014, 51302081 and 61575010, and the Science and Technology Commission of Beijing Municipality under Grant Nos Z151100003315018 and Z151100003515004. |
|
|
[1] | De Wolf S, Descoeudres A, Holman Z C and Ballif C 2012 Green 2 7 | [2] | Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H and Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518 | [3] | Zhou J, Di M D, Sun T T, Sun Y T and Wang H 2010 Acta Phys. Sin. 59 8870 (in Chinese) | [4] | Schüttauf J W A, van der Werf C H M, Kielen I M, van Sark W G J H M, Rath J K and Schropp R E I 2012 J. Non-Cryst. Solids 358 2245 | [5] | Panda K, Sankaran K J, Panigrahi B K, Tai N H and Lin I N 2014 ACS Appl. Mater. Interfaces 6 8531 | [6] | Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guerin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J and Ballif C 2011 Appl. Phys. Lett. 99 123506 | [7] | Tang M Z, Ge J, Wong J, Ling Z P, Dippell T, Zhang Z H, Huber M, Doerr M, Hohn O, Wohlfart P, Aberle A G and Mueller T 2015 Phys. Status Solidi RRL 9 47 | [8] | Wang F, Zhang X, Wang L, Jiang Y, Wei C, Sun J and Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098 | [9] | Li J, Luo C, M Z G, Xiong S Z and Hwok H S 2013 Chin. Phys. B 22 105101 | [10] | Hu Z H, Liao X B, Liu Z M, Xia C F and Chen T J 2003 Chin. Phys. B 12 112 | [11] | Nakamura K, Yoshino K, Takeoka S and Shimizu I 1995 Jpn. J. Appl. Phys. 34 442 | [12] | Ramanujam J and Verma A 2012 Mater. Express 2 177 | [13] | Mahan A H, Raboisson P, Williamson D L and Tsu R 1987 Sol. Cells 21 117 | [14] | Chen J H, Yang J, Shen Y J, Li Feng, Chen J W, Liu H X, Xu Y and Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) | [15] | De Wolf S, Olibet S and Ballif C 2008 Appl. Phys. Lett. 93 032101 | [16] | Gogolin R, Ferre R, Turcu M and Harder N P 2012 Sol. Energy Mater. Sol. Cells 106 47 | [17] | Mews M, Schulze T F, Mingirulli N and Korte L 2013 Appl. Phys. Lett. 102 122106 | [18] | Shinohara M, Kuwano T, Akama Y, Kimura Y, Niwano M, Ishida H and Hatakeyama R 2003 J. Vac Sci. Technol. A 21 25 | [19] | Huang S Y, Chen K J, Shi J J, Huang X F, Xu J, Ganguly G and Matsuda A 2001 Jpn. J. Appl. Phys. 40 40 | [20] | Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L and Ballif C 2013 Appl. Phys. Lett. 102 231604 | [21] | Schuttauf J W A, van der Werf C H M, van Sark W G J H M, Rath J K and Schropp R E I 2011 Thin Solid Films 519 4476 | [22] | De Wolf S and Kondo M 2007 Appl. Phys. Lett. 90 042111 | [23] | Chu Y H, Lee C C, Chang T H, Chang S Y, Chang J Y, Li T and Chen I C 2014 Thin Solid Films 570 591 | [24] | Meddeb H, Bearda T, Abdelraheem Y, Ezzaouia H, Gordon I, Szlufcik J and Poortmans J 2015 J. Phys. D 48 415301 | [25] | Ge J, Ling Z P, Wong J, Stangl R, Aberle A G and Mueller T 2013 J. Appl. Phys. 113 234310 | [26] | Descoeudres A, Barraud L, Bartlome R, Choong G, De Wolf S, Zicarelli F and Ballif C 2010 Appl. Phys. Lett. 97 183505 | [27] | Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K and Maruyama E 2014 IEEE J. Photovoltaics 4 96 | [28] | Sriraman S, Agarwal S, Aydil E S and Maroudas D 2002 Nature 418 62 | [29] | Xue Y, Gao C J, Gu J H, Feng Y Y, Yang S E, Lu J X, Huang Q and Feng Z Q 2013 Acta Phys. Sin. 62 197301 (in Chinese) | [30] | An I, Li Y M, Wronski C R and Collins R W 1993 Amorphous Silicon Technol. 297 43 | [31] | Terakawa A 2013 Sol. Energy Mater. Sol. Cells 119 204 | [32] | Beyer W 2016 Phys. Status Solidi A 213 1661 | [33] | Jin S and Ley L 1991 Phys. Rev. B 44 1066 | [34] | Gertkemper T, Ristein J and Ley L 1993 J. Non-Cryst. Solids 164 123 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|