Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 034701    DOI: 10.1088/0256-307X/34/3/034701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Determination of Slip Length in Couette Flow Based on an Analytical Simulation Incorporating Surface Interaction
Xin Zhao, Chao Wei**, Shi-Hua Yuan
Science and Technology on Vehicle Transmission Laboratory, Beijing Institute of Technology, Beijing 100081
Cite this article:   
Xin Zhao, Chao Wei, Shi-Hua Yuan 2017 Chin. Phys. Lett. 34 034701
Download: PDF(567KB)   PDF(mobile)(562KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achievement of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment.
Received: 12 September 2016      Published: 28 February 2017
PACS:  47.10.A- (Mathematical formulations)  
  47.15.St (Free shear layers)  
  47.61.Fg (Flows in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS))  
  47.85.ld (Boundary layer control)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51305033, and the Ministry of National Defense of China under Grant No 9140C340506.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/034701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/034701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Zhao
Chao Wei
Shi-Hua Yuan
[1]Bernoulli D 1968 Specimen Theoriae Novae de Mensura Sortis (Paris: Gregg)
[2]Koplik J and Banavar J R 1995 Annu. Rev. Fluid. Mech. 27 257
[3]Squires T M and Quake S R 2005 Rev. Mod. Phys. 77 977
[4]Vinogradova O I 1995 Langmuir 11 2213
[5]Beebe D J, Mensing G A and Walker G M 2002 Annu. Rev. Biomed. Eng. 4 261
[6]Voldman J, Gray M L and Schmidt M A 1999 Annu. Rev. Biomed. Eng. 1 401
[7]Valencia P M, Farokhzad O C, Karnik R and Langer R 2012 Nat. Nanotechnol. 7 623
[8]Cheng F and Ji W X 2016 Tribo. Int. 97 163
[9]Patel J R and Deheri G M 2016 J. Appl. Fluid Mech. 9 855
[10]Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 094702
[11]Chen Y Y, Yi H H and Li H B 2008 Chin. Phys. Lett. 25 184
[12]Pierre J and Patrick T 2005 Phys. Rev. E 71 035303
[13]Vinogradova O I, Koynov K, Best A and Feuillebois F 2009 Phys. Rev. Lett. 102 118302
[14]Schaeffel D, Koynov K, Vollmer D, Butt H J and Schoenecker C 2016 Phys. Rev. Lett. 116 134501
[15]Choi C H, Westin K J A and Breuer K S 2003 Phys. Fluids 15 2897
[16]Baudry J, Charlaix E, Tonck A and Mazuyer D 2001 Langmuir 17 5232
[17]Cottin-Bizonne C, Cross B, Steinberger A and Charlaix E 2005 Phys. Rev. Lett. 94 056102
[18]Vinogradova O I and Yakubov G E 2006 Phys. Rev. E 73 045302
[19]Navier C 1823 France 6 389
[20]Thompson P A and Troian S M 1997 Nature 389 360
[21]Martini A, Hsu H Y, Patankar N A and Lichter S 2008 Phys. Rev. Lett. 100 206001
[22]Zhang H, Zhang Z and Ye H 2012 Microfluid. Nanofluid. 12 107
[23]Cao B Y, Chen M and Guo Z Y 2005 Appl. Phys. Lett. 86 091905
[24]Cui H H et al 2004 Phys. Fluids 16 1803
[25]Bocquet L and Charlaix E 2010 Chem. Soc. Rev. 39 1073
[26]Neto C, Craig V S J and Williams D R M 2003 Eur. Phys. J. E 12 71
[27]Zhu Y and Granick S 2002 Langmuir 18 10058
[28]Cieplak M, Koplik J and Banavar J R 2001 Phys. Rev. Lett. 86 803
[29]Dowson D and Higginson G R 2014 Elasto-Hydrodynamic Lubrication: International Series on Materials Science and Technology (Guildford: Pergamon)
Bair S Winer W O 1992 J. Tribol. 114 1
[30]Belonoshko A B, Ahuja R and Johansson B 2000 Phys. Rev. Lett. 84 3638
[31]Jabbarzadeh A, Atkinson J D and Tanner R I 1999 J. Chem. Phys. 110 2612
[32]Gruener S, Wallacher D, Greulich S, Busch M and Huber P 2016 Phys. Rev. E 93 013102
[33]Gruener S and Huber P 2009 Phys. Rev. Lett. 103 174501
Related articles from Frontiers Journals
[1] A. Ebaid, B. Masaedeh, E. El-Zahar. A New Fractional Model for the Falling Body Problem[J]. Chin. Phys. Lett., 2017, 34(2): 034701
[2] A. Qayyum, M. Awais, A. Alsaedi, T. Hayat. Unsteady Squeezing Flow of Jeffery Fluid between Two Parallel Disks[J]. Chin. Phys. Lett., 2012, 29(3): 034701
[3] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 034701
[4] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 034701
[5] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 034701
Viewed
Full text


Abstract