Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 034302    DOI: 10.1088/0256-307X/34/3/034302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Localization in an Acoustic Cavitation Cloud
Bo-Ya Miao, Yu An**
Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
Bo-Ya Miao, Yu An 2017 Chin. Phys. Lett. 34 034302
Download: PDF(1067KB)   PDF(mobile)(1072KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we theoretically predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100 μm, the calculations reveal that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 μm, this spectral gap is related to a forbidden band of the sound wave. In the experiment, we observe the predicted gap in the frequency spectrum in soda water. However, in tap water, no spectral gap is present because the bubbles are much smaller than 100 μm.
Received: 07 December 2016      Published: 28 February 2017
PACS:  43.25.Yw (Nonlinear acoustics of bubbly liquids)  
  43.35.Ei (Acoustic cavitation in liquids)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.20.Fz (Weak or Anderson localization)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11334005, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120002110031, and the Tsinghua Fudaoyuan Foreigh Visiting Support Project.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/034302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/034302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo-Ya Miao
Yu An
[1]Frenzel H and Schultes H 1934 Z. Phys. Chem. Abt. B 27B 421
[2]Ohl C D, Kurz T, Geisler R, Lindau O and Lauterborn W 1999 Philos. Trans. R. Soc.A 357 269
[3]Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4]Liu Z Y, Zhang X X, Mao Y W et al 2000 Science 289 1734
[5]Minnaert M 1933 Philos. Mag. 16 235
[6]Ye Z and Alvarez A 1998 Phys. Rev. Lett. 80 3503
[7]Kafesaki M, Penciu R S and Economou E N 2000 Phys. Rev. Lett. 84 6050
[8]Liang B and Cheng J C 2007 Phys. Rev. E 75 16605
[9]An Y 2012 Phys. Rev. E 85 016305
[10]Zabolotskaya E A and Soluyan S I 1973 Sov. Phys. Acoust. 18 396
[11]Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
Related articles from Frontiers Journals
[1] TU Juan, GUAN J. F., MATULA T. J., Crum L. A., WEI Rongjue. Real-Time Measurements and Modelling on Dynamic Behaviour of SonoVue Bubbles Based on Light Scattering Technology[J]. Chin. Phys. Lett., 2008, 25(1): 034302
[2] Ahmad Moshaii, Rasool Sadighi-Bonabi, Mohammad Taeibi-Rahni, Mehdi Daemi. Effects of Liquid Second Viscosity in High-Amplitude Sonoluminescence[J]. Chin. Phys. Lett., 2004, 21(2): 034302
[3] QIAN Zu-Wen, XIAO Ling. Finite-Amplitude Vibration of a Bubble[J]. Chin. Phys. Lett., 2003, 20(1): 034302
Viewed
Full text


Abstract