Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 034301    DOI: 10.1088/0256-307X/34/3/034301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Geoacoustic Inversion for Bottom Parameters via Bayesian Theory in Deep Ocean
Xiao-Le Guo1,2, Kun-De Yang1,2**, Yuan-Liang Ma1,2
1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072
2Key Laboratory of Ocean Acoustics and Sensing (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
Xiao-Le Guo, Kun-De Yang, Yuan-Liang Ma 2017 Chin. Phys. Lett. 34 034301
Download: PDF(811KB)   PDF(mobile)(815KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop a new approach to estimating bottom parameters based on the Bayesian theory in deep ocean. The solution in a Bayesian inversion is characterized by its posterior probability density (PPD), which combines prior information about the model with information from an observed data set. Bottom parameters are sensitive to the transmission loss (TL) data in shadow zones of deep ocean. In this study, TLs of different frequencies from the South China Sea in the summer of 2014 are used as the observed data sets. The interpretation of the multidimensional PPD requires the calculation of its moments, such as the mean, covariance, and marginal distributions, which provide parameter estimates and uncertainties. Considering that the sensitivities of shallow-zone TLs vary for different frequencies of the bottom parameters in the deep ocean, this research obtains bottom parameters at varying frequencies. Then, the inversion results are compared with the sampling data and the correlations between bottom parameters are determined. Furthermore, we show the inversion results for multi-frequency combined inversion. The inversion results are verified by the experimental TLs and the numerical results, which are calculated using the inverted bottom parameters for different source depths and receiver depths at the corresponding frequency.
Received: 12 December 2016      Published: 28 February 2017
PACS:  43.30.Pc (Ocean parameter estimation by acoustical methods; remote sensing; imaging, inversion, acoustic tomography)  
  43.30.Ma (Acoustics of sediments; ice covers, viscoelastic media; seismic underwater acoustics)  
  92.10.Vz (Underwater sound)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11174235.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/034301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/034301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Le Guo
Kun-De Yang
Yuan-Liang Ma
[1]Yang K D, Ma Y L and Sun C 2004 IEEE J. Oceanic Eng. 29 964
[2]Guo X L, Yang K D and Ma Y L 2015 Acta Phys. Sin. 64 174302 (in Chinese)
[3]Guo X L, Yang K D, Ma Y L and Yang Q L 2015 Chin. Phys. Lett. 32 124302
[4]Bonnel J and Chapman N 2011 J. Acoust. Soc. Am. Exp. Lett. 130 EL101
[5]Duan R, Chapman N R, Yang K D and Ma Y L 2016 J. Acoust. Soc. Am. 139 70
[6]Dosso S E 2002 J. Acoust. Soc. Am. 111 129
[7]Dosso S E and Nielsen P L 2002 J. Acoust. Soc. Am. 111 143
[8]Tarantola A 1987 Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Amsterdam: Elsevier)
[9]Sen M K and Stoffa P L 1996 Geophys. Prospect. 44 313
[10]Sen M K and Stoffa P L 1995 Global Optimization Methods in Geophysical Inversion (Amsterdam: Elsevier)
[11]Wu S L, Li Z L and Qin J X 2015 Chin. Phys. Lett. 32 124301
[12]Jensen F B, Kuperman W A, Porter M B and Schmidt H 2000 Computational Ocean Acoustic (New York: American Institute of Physics)
[13]Hastings W K 1970 Biometrika 57 97
[14]Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
Related articles from Frontiers Journals
[1] Xue-Dong Zhang, Li-Xin Wu, Hai-Qiang Niu, Ren-He Zhang. Sequential Parameter Estimation Using Modal Dispersion Curves in Shallow Water[J]. Chin. Phys. Lett., 2018, 35(4): 034301
[2] Ji-Xing Qin, Boris Katsnelson, Oleg Godin, Zheng-Lin Li. Geoacoustic Inversion Using Time Reversal of Ocean Noise[J]. Chin. Phys. Lett., 2017, 34(9): 034301
[3] Hao-Zhong Wang, Ning Wang, Da-Zhi Gao, Bo Gao. Source-Space Compressive Matched Field Processing for Source Localization[J]. Chin. Phys. Lett., 2016, 33(04): 034301
[4] WU Shuang-Lin, LI Zheng-Lin, QIN Ji-Xing. Geoacoustic Inversion for Bottom Parameters in the Deep-Water Area of the South China Sea[J]. Chin. Phys. Lett., 2015, 32(12): 034301
[5] WANG Jing-Yan, LI Feng-Hua. Preliminary Study on Underwater Ambient Noise Generated by Typhoons[J]. Chin. Phys. Lett., 2015, 32(4): 034301
[6] LI Feng-Hua, ZHANG Bo, GUO Yong-Gang. A Method of Measuring the In Situ Seafloor Sound Speed using Two Receivers with Warping Transformation[J]. Chin. Phys. Lett., 2014, 31(2): 034301
[7] NIU Hai-Qiang, ZHANG Ren-He, LI Zheng-Lin, GUO Yong-Gang, HE Li. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators[J]. Chin. Phys. Lett., 2013, 30(8): 034301
[8] PENG Zhao-Hui**, LI Zheng-Lin, WANG Guang-Xu,. Matched Bearing Processing for Airborne Source Localization by an Underwater Horizontal Line Array[J]. Chin. Phys. Lett., 2010, 27(11): 034301
[9] PENG Han-Shu, LI Feng-Hua. Geoacoustic Inversion Based on a Vector Hydrophone Array[J]. Chin. Phys. Lett., 2007, 24(7): 034301
[10] LI Zheng-Lin, ZHANG Ren-He. Geoacoustic Inversion Based on Dispersion Characteristic of Normal Modes in Shallow Water[J]. Chin. Phys. Lett., 2007, 24(2): 034301
[11] GUO Yong-Gang, LI Feng-Hua, LIU Jian-Jun, LI Zheng-Lin. Time-Domain Geoacoustic Inversion Based on Normal Incidence Reflection from Layered Sediment[J]. Chin. Phys. Lett., 2006, 23(9): 034301
[12] LI Zheng-Lin, ZHANG Ren-He. A Broadband Geoacoustic Inversion Scheme[J]. Chin. Phys. Lett., 2004, 21(6): 034301
Viewed
Full text


Abstract