FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Interference from Two-Photon Sources in Silica-on-Silicon Circuits at Telecom Wavelength |
Xing-Yun Li, Lu Qin, Jia-Shun Zhang, Mei-Zhen Ren, Jun-Ming An, Xiao-Hong Yang, Xing-Sheng Xu** |
State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
Xing-Yun Li, Lu Qin, Jia-Shun Zhang et al 2017 Chin. Phys. Lett. 34 034211 |
|
|
Abstract The integrated photonic chip is a promising way to realize future quantum technology. Here we demonstrate a two-photon interference in the standard telecommunication band on a silica-on-silicon integrated photonic chip. Two identical photons in the 1.55 μm band, which are indistinguishable in spatial, frequency and polarization, are generated by type-I collinear spontaneous parametric down-conversion via bismuth borate. The silica-on-silicon integrated chip, which has an insertion loss less than 1 dB, is a Mach–Zehnder interferometer with a thermo-optic phase shifter. A high visibility of 100% in the classical interference and 99.2% in the two-photon interference is achieved, indicating that the two-photon interference with high interference visibility on the chip is attained successfully.
|
|
Received: 27 October 2016
Published: 28 February 2017
|
|
PACS: |
42.50.St
|
(Nonclassical interferometry, subwavelength lithography)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61627820, 61575191 and 61275045, and the National Basic Research Program of China under Grant Nos 2016YFA0301200, 2013CB632105. |
|
|
[1] | Gisin N and Thew R T 2010 Electron. Lett. 46 965 | [2] | Thompson M et al 2011 IET Circ. Dev. Syst. 5 94 | [3] | Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044 | [4] | Rosfjord K M et al 2006 Opt. Express 14 527 | [5] | Chen J R, Zhang W, Zhou Q et al 2010 Chin. Phys. Lett. 27 124208 | [6] | Wang P X, Zhou Q, Zhang W et al 2012 Chin. Phys. Lett. 29 054215 | [7] | Peruzzo A, Lobino M, Matthews J C et al 2010 Science 329 1500 | [8] | Matthews J C F, Politi A, Bonneau D et al 2011 Phys. Rev. Lett. 107 163602 | [9] | Politi A, Cryan M J, Rarity J G et al 2008 Science 320 646 | [10] | Carolan J, Harrold C, Sparrow C et al 2015 Science 349 711 | [11] | Silverstone J W, Bonneau D, Ohira K et al 2013 Nat. Photon. 8 104 | [12] | Bonneau D, Engin E, Ohira K et al 2012 New J. Phys. 14 045003 | [13] | Zhang Y, McKnight L, Engin E et al 2011 Appl. Phys. Lett. 99 161119 | [14] | Matthews J C F, Politi A, Stefanov A et al 2009 Nat. Photon. 3 346 | [15] | Poulios K, Fry D, Politi A et al 2013 Opt. Express 21 23401 | [16] | Laing A, Peruzzo A, Politi A et al 2010 Appl. Phys. Lett. 97 211109 | [17] | Marshall G D, Politi A, Matthews J C F et al 2009 Opt. Express 17 12546 | [18] | Li X Y, Yang L, Cui L et al 2008 Opt. Lett. 33 593 | [19] | Yang L 2011 Acta Phys. Sin. 60 2509 (in Chinese) | [20] | Yang L, Ma X X, Cui L et al 2011 Acta Phys. Sin. 60 308 (in Chinese) | [21] | Rarity J G, Tapster P R, Jakeman E et al 1990 Phys. Rev. Lett. 65 1348 | [22] | Yuan P, Wu Y D, Wang Y et al 2015 J. Semicond. 36 084005 | [23] | Zhang L M, Lu D, Li Z S et al 2016 J. Semicond. 37 124005 | [24] | Bonneau D, Lobino M, Jiang P et al 2012 Phys. Rev. Lett. 108 053601 | [25] | Noh T G, Kim H, Youn C et al 2006 Opt. Express 14 2805 | [26] | Cho S B and Noh T G 2007 Opt. Express 15 7591 | [27] | Huo G, Zhang T, Wan R et al 2013 Optik 124 6627 | [28] | Huo G, Wang Y and Zhang M 2015 Appl. Phys. B 120 239 | [29] | Zhang M and Huo G 2014 Opt. Eng. 53 086105 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|