Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 034209    DOI: 10.1088/0256-307X/34/3/034209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
External Cavity Tuning of Coherent Quantum Cascade Laser Array Emitting at $\sim$7.6μm
Chuan-Wei Liu1,2, Jin-Chuan Zhang1,2**, Fang-Liang Yan1, Zhi-Wei Jia1,2, Zhi-Bin Zhao1,2, Ning Zhuo1,2**, Feng-Qi Liu1,2,3, Zhan-Guo Wang1,2
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083
3College of Materials Science and OptoElectronic Technology, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Chuan-Wei Liu, Jin-Chuan Zhang, Fang-Liang Yan et al  2017 Chin. Phys. Lett. 34 034209
Download: PDF(559KB)   PDF(mobile)(553KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is presented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow configuration. Taking advantage of the single-lobed fundamental supermode far-field pattern, the tuning capability of 30.6 cm$^{-1}$ is achieved with a fixed injected current of 3.5 A at room temperature. Single-mode emission can be observed in the entire process. The maximum single-mode output power of the external cavity setup is as high as 25 mW and is essential in real applications.
Received: 08 October 2016      Published: 28 February 2017
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.25.Kb (Coherence)  
  42.60.By (Design of specific laser systems)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB632801, the National Key Research and Development Program of China under Grant No 2016YFB0402303, the National Natural Science Foundation of China under Grant Nos 61435014, 61627822, 61574136, 61306058 and 61404131, the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4, and the Beijing Natural Science Foundation under Grant No 4162060.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/034209       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/034209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan-Wei Liu
Jin-Chuan Zhang
Fang-Liang Yan
Zhi-Wei Jia
Zhi-Bin Zhao
Ning Zhuo
Feng-Qi Liu
Zhan-Guo Wang
[1]Kosterev A A and Tittel F K 2002 IEEE J. Quantum Electron. 38 582
[2]Corrigan P, Martini R, Whittaker E A and Bethea C 2009 Opt. Express 17 4355
[3]Mukherjee A, Prasanna M, Lane M, Go R, Dunayevskiy I, Tsekoun A and Patel C K N 2008 Appl. Opt. 47 4884
[4]Wittmann A, Bonetti Y, Fischer M, Faist J, Blaser S and Gini E 2009 IEEE Photon. Technol. Lett. 21 814
[5]Zhang J C, Liu F Q, Tan S, Yao D Y, Wang L J, Li L, Liu J Q and Wang Z G 2012 Appl. Phys. Lett. 100 112105
[6]Zhang J C, Liu F Q, Yao D Y, Zhuo N, Wang L J, Liu J Q and Wang Z G 2013 J. Appl. Phys. 113 153101
[7]Wittmann A, Giovannini M, Faist J, Hvozdara L and Blaser S 2006 Appl. Phys. Lett. 89 141116
[8]Li Y Y, Xu G Y, Li A Z, Wei L, Li H and Mei B 2007 Chin. Phys. Lett. 24 2980
[9]Young C, Cendejas R, Howard S S, Sanchez-Vaynshteyn W, Hoffman A J, Franz K J, Yao Y, Mizaikoff B, Wang X J, Fan J and Gmachl C F 2009 Appl. Phys. Lett. 94 091109
[10]Hugi A, Maulini R and Faist J 2010 Semicond. Sci. Technol. 25 083001
[11]Zhang J C, Wang L J, Liu W F, Liu F Q, Yin W, Liu J Q, Li L and Wang Z G 2011 Chin. Phys. Lett. 28 074203
[12]Luo G P, Peng C, Le H Q, Pei S S, Hwang W Y, Ishaug B, Um J, Baillargeon J N and Lin C H 2001 Appl. Phys. Lett. 78 2834
[13]Hugi A, Terazzi R, Bonetti Y, Wittmann A, Fischer M, Beck M, Faist J and Gini E 2009 Appl. Phys. Lett. 95 061103
[14]Bandyopadhyay N, Bai Y, Slivken S and Razeghi M 2014 Appl. Phys. Lett. 105 071106
[15]Vallon R, Parvitte B, Bizet L, Naurois G M D, Simozrag B, Maisons G, Carras M and Zeninari V 2016 Infrared Phys. Technol. 76 415
[16]Liu Y H, Zhang J C, Yan F L, Liu F Q, Zhuo N, Wang L J, Liu J Q and Wang Z G 2015 Appl. Phys. Lett. 106 142104
[17]Mammez D, Vallen R, Parvitte B, Mammez M H, Carras M and Zéninari V 2014 Appl. Phys. B 116 951
[18]Maulini R, Yarekha D A, Bulliard J M, Giovannini M and Faist J 2005 Opt. Lett. 30 2854
[19]Mroziewicz B 2008 Opto-Electron. Rev. 16 347
[20]Yan F L, Zhang J C, Jia Z W, Zhuo N, Zhai S Q, Liu S M, Liu F Q and Wang Z G 2016 AIP Adv. 6 035022
[21]Zhang J C, Wang L J, Liu W F, Liu F Q, Zhao L H, Zhai S Q, Liu J Q and Wang Z G 2012 J. Semicond. 33 024005
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 034209
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 034209
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 034209
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 034209
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 034209
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 034209
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 034209
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 034209
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 034209
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 034209
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 034209
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 034209
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 034209
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 034209
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 034209
Viewed
Full text


Abstract