FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Cs 5$D_ {5/2}$–$6F$ 728nm Laser Spectroscopy with Single Pumping Laser |
Qi Zhou1, Peng-Yuan Chang2, Zhong-Zheng Liu2, Xiao-Gang Zhang2, Chuan-Wen Zhu2, Jing-Biao Chen2** |
1School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 2State Key Laboratory of Advanced Optical Communication System and Network, Institute of Quantum Electronics, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
|
|
Cite this article: |
Qi Zhou, Peng-Yuan Chang, Zhong-Zheng Liu et al 2017 Chin. Phys. Lett. 34 034208 |
|
|
Abstract The sub-Doppler absorption laser spectroscopy at 728 nm transition from the 5$D_ {5/2}$ state to the $6F$ state of cesium with linewidth near 10 MHz is first experimentally performed with indirect pumping from the ground state 6$S_{1/2}$ to the state 7$P_{3/2}$ by a 455.5 nm diode laser. Using a 455.5 nm diode laser as an indirect pump laser, several excited states will be populated due to spontaneous decay from the $7P$ state. We first implement the sub-Doppler absorption laser spectroscopy at 728 nm from the 5$D_ {5/2}$ state to the $6F$ state when Cs atoms within thermal glass cell decay to the 5$D_ {5/2}$ state. Due to velocity transfer effect, the hyperfine structure of 5$D_ {5/2}$ shows a mixed and complicated pattern but very clear structure when the 455.5 nm pumping laser is counter-propagating (or co-propagating) with the 728 nm probing laser.
|
|
Received: 12 December 2016
Published: 28 February 2017
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 91436210. |
|
|
[1] | Peaman C P 2002 J. Phys. B 35 5141 | [2] | Zhang X G, Tao Z M, Zhu C W, Hong Y L, Zhuang W and Chen J B 2013 Opt. Express 21 28010 | [3] | Miao X Y, Yin L F, Zhuang W, Luo B, Dang A H, Chen J B and Guo H 2011 Rev. Sci. Instrum. 82 086106 | [4] | Li Y, Lin Y G, Wang Q, Wang S K, Zhao Y, Meng F, Lin B K, Cao J P, Li T C, Fang Z J and Zang E J 2014 Chin. Phys. Lett. 31 024207 | [5] | Zentile M, Andrews R, Weller L, Knappe S, Adams C and Hughe I 2014 J. Phys. B 47 075005 | [6] | Zhuang W, Hong Y L, Tao Z M, Zhu C W and Chen J B 2014 Chin. Opt. Lett. 12 101204 | [7] | Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H and Gao K L 2014 Chin. Phys. Lett. 31 113702 | [8] | Chen J B 2009 Chin. Sci. Bull. 54 348 | [9] | Zhuang W and Chen J B 2014 Opt. Lett. 39 6339 | [10] | Zhang T G, Wang Y F and Zang X R 2013 Chin. Sci. Bull. 58 2033 | [11] | Zhuang W, Zhang T G and Chen J B 2014 Chin. Phys. Lett. 31 093201 | [12] | Kitching J, Knappe S and Hollberg L 2002 Appl. Phys. Lett. 81 553 | [13] | Gianfrani L, Gagliardi G and van B M 2003 Opt. Express 11 1566 | [14] | Liu H, Gao F, Wang Y B, Tian X, Ren J, Lu B Q, Xu Q F, Xie Y L and Chang H 2015 Chin. Phys. B 24 013201 | [15] | Meng Y L, Cheng H D, Zheng B C, Wang X C, Xiao L and Liu L 2013 Chin. Phys. Lett. 30 063701 | [16] | Zheng B C, Cheng H D, Meng Y L, Xiao L, Wan J Y and Liu L 2014 Chin. Phys. Lett. 31 073701 | [17] | Zheng B C, Cheng H D, Meng Y L, Xiao L, Wan J Y and Liu L 2013 Chin. Phys. Lett. 30 123701 | [18] | Lu X H, Chen X M, Zhang L and Xue D J 2003 Chin. Phys. Lett. 20 2155 | [19] | Xu S Q, Yang Z M, Zhang J J, Wang G N, Dai S X, Hu L L and Jiang Z H 2004 Chem. Phys. Lett. 385 263 | [20] | Soibel A, Wright M W and Farr W H 2010 IEEE Photon. Technol. Lett. 22 121 | [21] | Jiang X J, Zhang H C and Wang Y Z 2016 Chin. Phys. B 25 034204 | [22] | Gong S J, Zhou F, Wu H Y, Wan W, Chen L and Feng M 2015 Chin. Phys. Lett. 32 013201 | [23] | Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213 | [24] | Huang J Q, Zhang J W, Wang S G, Wang Z B and Wang L J 2015 Chin. Phys. B 24 113701 | [25] | Eriksson K B S and Wenkker I 1970 Phys. Scr. 1 21 | [26] | Basov N G, Gubin M A and Nikitin V V 2007 Sov. J. Quantum Electron. 13 702 | [27] | Han S M and Noh H R 2011 Phys. Rev. A 84 033821 | [28] | Kale Y B, Ray A and Lawande Q V 2011 Phys. Scr. 84 035401 | [29] | Liu Z Z, Tao Z M and Jiang Z J 2014 Chin. Phys. Lett. 31 120602 | [30] | Wang Y F, Wang D Y, Zhang T G, Hong Y L, Zhang S N, Tao Z M, Xie X P and Chen J B 2013 Sci. Chin. Phys. Mech. Astron. 56 1107 | [31] | Zhang L G, Liu Z Z, Tao Z M, Ling L and Chen J B 2014 Chin. Phys. Lett. 31 083101 | [32] | Wang Y F, Zhang S N, Wang D Y, Tao Z M, Hong Y L and Chen J B 2012 Opt. Lett. 37 4059 | [33] | Tao Z M, Zhang X G and Chen M 2016 Phys. Lett. A 380 2150 | [34] | Tao Z M, Hong Y L, Luo B, Chen J B and Guo H 2015 Opt. Lett. 40 4348 | [35] | Sun Q Q, Zhuang W, Liu Z W and Chen J B 2011 Opt. Lett. 36 4611 | [36] | Svanberg S, Tsekeris P and Happer W 1973 Phys. Rev. Lett. 30 817 | [37] | Yei W, Sieradzan A and Cerasuolo E 1998 Phys. Rev. A 57 3419 | [38] | Liu Z Z, Xue X B, Niu F Z, Zhang L G, Lin L and Chen J B 2014 Chin. Phys. Lett. 31 120601 | [39] | Zang X R, Zhang T G and Chen J B 2012 Chin. Phys. Lett. 29 090601 | [40] | Wang Y F, Xue X B, Wang D Y, Zhang T G, Hong Y L, Zhuang W and Chen J B 2012 Proceedings of International Frequency Control Symposium (IEEE Baltimore BC) p 1 | [41] | Xu Z C, Zhuang W, Wang Y F, Wang D Y, Zhang X G, Xue X B, Pan D and Chen J B 2013 European Frequency and Time Forum and International Frequency Control Symposium p 395 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|