Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 034201    DOI: 10.1088/0256-307X/34/3/034201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line
Hong-Wei Guo, Shun-Cai Zhao**, Xiao-Jing Wei, Xin Li
Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming 650500
Cite this article:   
Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei et al  2017 Chin. Phys. Lett. 34 034201
Download: PDF(567KB)   PDF(mobile)(558KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Negative refractive index (NRI) of the mesoscopic dissipative left-handed transmission line (LHTL) is manipulated by the displaced squeezed Fock state and the dissipation presented by the resistance and conductance. Compared with the classical LHTL, some novel characteristics of NRI are shown in the LHTL because of the quantum effect, which will be significant for its miniaturization application in microwave frequency.
Received: 26 November 2016      Published: 28 February 2017
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61205205 and 6156508508, the General Program of Yunnan Applied Basic Research Project of China under Grant No 2016FB009, and the Foundation for Personnel Training Projects of Yunnan Province of China under Grant No KKSY201207068.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/034201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/034201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Wei Guo
Shun-Cai Zhao
Xiao-Jing Wei
Xin Li
[1]Veselago V G 1968 Sov. Phys. Usp. 10 509
[2]Seddon N and Bearpark T 2003 Science 302 1537
[3]Leong K, Lai A and Itoh T 2006 Microwave Opt. Technol. Lett. 48 545
[4]Chen J, Wang Y and Jia B 2011 Nat. Photon. 5 239
[5]Xi S, Chen H and Jiang T 2009 Phys. Rev. Lett. 103 194801
[6]Pendry J B 2000 Phys. Rev. Lett. 85 3966
[7]Sulagna D and Krishna R D 2012 Mol. Phys. 110 1
[8]Ling T, Zou Y Z and Lin Z 2007 J. Microwaves 49 2975
[9]Korobkin D, Rd N B and Fietz C 2010 Opt. Express 18 22734
[10]Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[11]Zhao S C, Liu Z D, Zheng J, Li G 2011 Chin. Phys. B 20 067802
[12]Zhao S C, Liu Z D and Wu Q X 2010 Chin. Phys. B 19 014211
[13]Zhao S C, Zhang S Y Wu Q X and Jia J 2015 Chin. Phys. Lett. 32 058104
[14]Eleftheriades G V, Iyer A K and Kremer P C 2002 IEEE Trans. Microwave Theory Tech. 50 2702
[15]Caloz C and Itoh T 2002 IEEE Antennas Propag. Soc. Int. Symp. 2 412
[16]Caloz C and Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (New York: Wiley)
[17]Shelby R A, Smith D R and Nemat-Nasser S C 2001 Appl. Phys. Lett. 78 489
[18]Grbic A and Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403
[19]Marquès R, Martel J, Mesa F 2002 Phys. Rev. Lett. 89 183901
[20]Likharev K K and Claeson T 1992 Sci. Am. 266 50
[21]Kasmer M A 1992 Rev. Mod. Phys. 64 849
[22]Fan H Y and Liang X T 2000 Chin. Phys. Lett. 17 174
[23]Zhao S C, Guo H W and Wei X J 2016 arXiv:1607.06056
[24]Rey M, Michelot F, Tyuterev V G 2008 Phys. Rev. A 78 022511
[25]Král P 1990 Phys. Rev. A 42 4177
[26]Wu Y and Côté R 2002 Phys. Rev. A 66 025801
[27]Obada A S F and Abd Al-Kader G M 1999 J. Mod. Opt. 46 263
[28]Garca-Fernández P, Bermejo F J 1989 Phys. Rev. A 39 1869
[29]Yang D B, Chen Y and Zhang F L 2011 J. Phys. B 44 75502
[30]Tricca D, Sibilia C and Severini S 2004 J. Opt. Soc. Am. B 21 671
[31]Oelker E, Isogai T and Miller J 2016 Phys. Rev. Lett. 116 041102
[32]Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley and Son's)
[33]Mller K B, Jrgensen T G and Dahl J P 1996 Phys. Rev. A 54 5378
[34]Szabo S, Adam P, Janszky J and Domokos P 1996 Phys. Rev. A 53 2698
[35]Nieto M M 1997 Phys. Lett. A 229 135
Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 034201
[2] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 034201
[3] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 034201
[4] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 034201
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 034201
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 034201
[7] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 034201
[8] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 034201
[9] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 034201
[10] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 034201
[11] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 034201
[12] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 034201
[13] WANG Chun-Fang, WANG Feng, YANG Li-Ru. Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium[J]. Chin. Phys. Lett., 2015, 32(09): 034201
[14] YANG Li-Ru, WANG Chun-Fang, ZHANG Da-Wei. Transverse Optical Properties of the Eu3+:Y2SiO5 Crystal in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(06): 034201
[15] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 034201
Viewed
Full text


Abstract