Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 028901    DOI: 10.1088/0256-307X/34/2/028901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy
Chang-Quan Chen, Qiong-Lin Dai**, Wen-Chen Han, Jun-Zhong Yang
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han et al  2017 Chin. Phys. Lett. 34 028901
Download: PDF(692KB)   PDF(mobile)(692KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one layer and snowdrift game (SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy, initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover, in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover, similar behaviors on cooperation could be found in two-layer random networks.
Received: 21 October 2016      Published: 25 January 2017
PACS:  89.75.Fb (Structures and organization in complex systems)  
  02.50.Le (Decision theory and game theory)  
  87.23.Kg (Dynamics of evolution)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11575036, 71301012, and 11505016.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/028901       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/028901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang-Quan Chen
Qiong-Lin Dai
Wen-Chen Han
Jun-Zhong Yang
[1]Smith J M 1982 Evolution and the Theory of Games (Cambridge: Cambridge University)
[2]Szabó G and Fáth G 2007 Phys. Rep. 446 97
[3]Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95 098104
[4]Gómez-Gardeñes J, Campillo M, Floría L M and Moreno Y 2007 Phys. Rev. Lett. 98 108103
[5]Devlin S and Treloar T 2009 Phys. Rev. E 80 026105
[6]Rong Z H, Li X and Wang X F 2007 Phys. Rev. E 76 027101
[7]Tanimoto J 2010 Physica A 389 3325
[8]Pacheco J M, Traulsen A and Nowak M A 2006 Phys. Rev. Lett. 97 258103
[9]Cheng H Y, Li H H, Dai Q L, Zhu Y and Yang J Z 2010 New J. Phys. 12 123014
[10]Du P, Xu C and Zhang W 2015 Chin. Phys. Lett. 32 058901
[11]Xia H J, Li P P, Ke J H and Lin Z Q 2015 Chin. Phys. B 24 040203
[12]Nowak M A and May R M 1992 Nature 359 826
[13]Gao J X, Buldyrev S V, Stanley H E and Havlinet S 2012 Nat. Phys. 491 426
[14]Boccaletti S, Bianconi G, Criado R, del Genio C I, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z and Zaninet M 2015 Phys. Rep. 554 1
[15]Li H H, Dai Q L, Cheng H Y and Yang J Z 2010 New J. Phys. 12 093048
[16]Wang B K, Pei Z H and Wang L 2014 Europhys. Lett. 107 58006
[17]Wang Z, Szolnoki A and Perc M 2014 New J. Phys. 16 033041
[18]Wang Z, Wang L and Perc M 2014 Phys. Rev. E 89 052813
[19]Jin Q, Wang L, Xia C Y and Wang Z 2014 Sci. Rep. 4 4095
[20]Wang Z, Wang L, Szolnoki A and Perc M 2015 Eur. Phys. J. B 88 124
[21]Kenett D Y, Perc M and Boccaletti S 2015 Chaos Solitons Fractals 80 1
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 028901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 028901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 028901
[4] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 028901
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 028901
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 028901
[7] Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai. Network Aggregation Process in Multilayer Air Transportation Networks[J]. Chin. Phys. Lett., 2016, 33(10): 028901
[8] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 028901
[9] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 028901
[10] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 028901
[11] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 028901
[12] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 028901
[13] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 028901
[14] DU Peng, XU Chen, ZHANG Wen. Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game[J]. Chin. Phys. Lett., 2015, 32(5): 028901
[15] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 028901
Viewed
Full text


Abstract