Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 027301    DOI: 10.1088/0256-307X/34/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors
Xue-Feng Zheng1**, Ao-Chen Wang1, Xiao-Hui Hou2, Ying-Zhe Wang1, Hao-Yu Wen1, Chong Wang1, Yang Lu1, Wei Mao1, Xiao-Hua Ma1, Yue Hao1
1Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
2School of Computer Science and Technology, Xidian University, Xi'an 710071
Cite this article:   
Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou et al  2017 Chin. Phys. Lett. 34 027301
Download: PDF(547KB)   PDF(mobile)(547KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermal management is an important issue for AlGaN/GaN high-electron-mobility transistors (HEMTs). In this work, the influence of the diamond layer on the electrical characteristics of AlGaN/GaN HEMTs is investigated by simulation. The results show that the lattice temperature can be effectively decreased by utilizing the diamond layer. With increasing the drain bias, the diamond layer plays a more significant role for lattice temperature reduction. It is also observed that the diamond layer can induce a negative shift of threshold voltage and an increase of transconductance. Furthermore, the influence of the diamond layer thickness on the frequency characteristics is investigated as well. By utilizing the 10-μm-thickness diamond layer in this work, the cutoff frequency $f_{\rm T}$ and maximum oscillation frequency $f_{\max}$ can be increased by 29% and 47%, respectively. These results demonstrate that the diamond layer is an effective technique for lattice temperature reduction and the study can provide valuable information for HEMTs in high-power and high-frequency applications.
Received: 27 September 2016      Published: 25 January 2017
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Lw (Thermoelectric effects)  
  73.61.Ey (III-V semiconductors)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61334002, 61474091, 61574110 and 61574112, the National Key Research and Development Plan of China under Grant No 2016YFB0400205, the 111 Project of the Ministry of Education of China under Grant No B12026, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education of China under Grant No JY0600132501.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/027301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xue-Feng Zheng
Ao-Chen Wang
Xiao-Hui Hou
Ying-Zhe Wang
Hao-Yu Wen
Chong Wang
Yang Lu
Wei Mao
Xiao-Hua Ma
Yue Hao
[1]Liu S H, Cai Y, Gong R M, Wang J Y, Zeng C H, Shi W H, Feng Z H, Wang J J, Yin J Y, Cheng P W, Qin H and Zhang B S 2011 Chin. Phys. Lett. 28 077202
[2]Wang Y, Yu N S, Li M and Lau K M 2011 Chin. Phys. Lett. 28 057102
[3]Zhang G C, Feng S W, Hu P F, Zhao Y, Guo C S, Xu Yang, Chen T S and Jiang Y J 2011 Chin. Phys. Lett. 28 017201
[4]Wang J H, Wang X H, Pang L, Chen X J and Liu X Y 2012 Chin. Phys. Lett. 29 088502
[5]Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Mastro M A, Caldwell J D, Hite J K, Eddy C R, Jr., Kub F J, Butler J E and Melngailis J 2010 Device Res. Conf. IEEE 125
[6]Turin V O and Balandin A A 2006 J. Appl. Phys. 100 054501
[7]Sarua A, Ji H, Kuball M, Uren M J, Martin T, Hilton K P and Balmer R S 2006 IEEE Trans. Electron Devices 53 2438
[8]Francis D, Faili F, Babić D, Ejeckam F, Nurmikko A and Maris H 2010 Diamond Relat. Mater. 19 229
[9]Anderson T J, Tadjer M J, Hobart K D, Feygelson T I, Caldwell J D, Mastro M A, Hite J K, Eddy C R, Kub F J, Butler J E and Pate B B 2011 IEEE Semiconductor Device Research Symposium (College Park, MD, USA 7–9 December 2011) p 1
[10]Wang A, Tadjer M J and Calle F 2013 Semicond. Sci. Technol. 28 055010
[11]Shen Y F 2011 MSc Dissertation (Shandong: Shandong University) (in Chinese)
[12]Grishakov K S, Elesin V F, Ryzhuk R V, Kargin N I and Minnebaev S V 2015 Phys. Procedia 72 460
[13]Das J, Oprins H, Ji H, Sarua A, Ruythooren W, Derluyn J, Kuball M, Germain M and Borghs G 2006 IEEE Trans. Electron Devices 53 2696
[14]Wang A, Tadjer M J, Anderson T J, Baranyai R, Pomeroy J W, Feygelson T I, Hobart K D, Pate B B, Fernando C and Kuball M 2013 IEEE Trans. Electron Devices 60 3149
[15]Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R, Kub F J, Butler J E and Melngailis J 2012 IEEE Electron Device Lett. 33 23
[16]Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Feygelson T I, Hite J K, Pate B B, Kub F J and Eddy C R 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (New Orleans USA 13–16 October 2015) p 1
Related articles from Frontiers Journals
[1] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 027301
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 027301
[3] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 027301
[4] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 027301
[5] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 027301
[6] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 027301
[7] Jun Luo, Sheng-Lei Zhao, Zhi-Yu Lin, Jin-Cheng Zhang, Xiao-Hua Ma, Yue Hao. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chin. Phys. Lett., 2016, 33(06): 027301
[8] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 027301
[9] GUO Hong-Yu, LV Yuan-Jie, GU Guo-Dong, DUN Shao-Bo, FANG Yu-Long, ZHANG Zhi-Rong, TAN Xin, SONG Xu-Bo, ZHOU Xing-Ye, FENG Zhi-Hong. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(11): 027301
[10] TANG Xiao-Yu, LU Ji-Wu, ZHANG Rui, WU Wang-Ran, LIU Chang, SHI Yi, HUANG Zi-Qian, KONG Yue-Chan, ZHAO Yi. Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Chin. Phys. Lett., 2015, 32(11): 027301
[11] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 027301
[12] LIU Shi-Ming, XIAO Hong-Ling, WANG Quan, YAN Jun-Da, ZHAN Xiang-Mi, GONG Jia-Min, WANG Xiao-Liang, WANG Zhan-Guo. InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%[J]. Chin. Phys. Lett., 2015, 32(08): 027301
[13] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 027301
[14] WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun, LU Hai, ZHANG Rong, ZHENG You-Dou. Forward Current Transport Mechanisms of Ni/Au–InAlN/AlN/GaN Schottky Diodes[J]. Chin. Phys. Lett., 2014, 31(05): 027301
[15] ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou, LI Liang. Vacuum Violet Photo-Response of AlGaN-Based Metal-Semiconductor-Metal Photodetectors[J]. Chin. Phys. Lett., 2013, 30(11): 027301
Viewed
Full text


Abstract