Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 026201    DOI: 10.1088/0256-307X/34/2/026201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe
Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He**, Yong-Bing Xu**, Rong Zhang
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
Ke-Jie Wang, Wei Wang, Min-Hao Zhang et al  2017 Chin. Phys. Lett. 34 026201
Download: PDF(829KB)   PDF(mobile)(812KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic applications. In this work, we successfully synthesize PbTe nanowires via the chemical vapor deposition method and demonstrate the existence of topological surface states by their 2D weak anti-localization effect and Shubnikov–de Haas oscillations. More importantly, the surface state contributes $\sim$61% of the total conduction, suggesting dominant surface transport in PbTe nanowires at low temperatures. Our work provides an experimental groundwork for researching TCIs and is a step forward for the applications of PbTe nanowires in spintronic devices.
Received: 11 October 2016      Published: 25 January 2017
PACS:  62.23.Hj (Nanowires)  
  81.07.Gf (Nanowires)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  05.60.Gg (Quantum transport)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300803, the National Basic Research Program of China under Grant No 2014CB921101, and the National Natural Science Foundation of China under Grant Nos 61474061 and 61674079.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/026201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/026201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ke-Jie Wang
Wei Wang
Min-Hao Zhang
Xiao-Qian Zhang
Pei Yang
Bo Liu
Ming Gao
Da-Wei Huang
Jun-Ran Zhang
Yu-Jie Liu
Xue-Feng Wang
Feng-Qiu Wang
Liang He
Yong-Bing Xu
Rong Zhang
[1]Fu L 2011 Phys. Rev. Lett. 106 106802
[2]Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3]Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[4]Wang Q, Wang F, Li J, Wang Z, Zhan X and He J 2015 Small 11 4613
[5]Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[6]Wang Q, Safdar M, Wang Z and He J 2013 Adv. Mater. 25 3915
[7]Kong D and Cui Y 2011 Nat. Chem. 3 845
[8]Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Mater. 11 1023
[9]Xu S Y, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Denlinger J D, Wang Y J, Lin H, Wray L A, Landolt G, Slomski B, Dil J H, Marcinkova A, Morosan E, Gibson Q, Sankar R, Chou F C, Cava R J, Bansil A and Hasan M Z 2012 Nat. Commun. 3 1192
[10]Safdar M, Wang Q, Mirza M, Wang Z, Xu K and He J 2013 Nano Lett. 13 5344
[11]Li Z, Shao S, Li N, McCall K, Wang J and Zhang S X 2013 Nano Lett. 13 5443
[12]Kong D, Dang W, Cha J J, Li H, Meister S, Peng H, Liu Z and Cui Y 2010 Nano Lett. 10 2245
[13]Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
[14]Altshuler B L, Aronov A G and Khmelnitsky D E 1982 J. Phys. C 15 7367
[15]Tanaka Y, Ren Z, Sato T et al 2012 Nat. Phys. 8 800
[16]Tanaka Y, Sato T, Nakayama K, Souma S, Takahashi T, Ren Z, Novak M, Segawa K and Ando Y 2013 Phys. Rev. B 87 155105
[17]Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C and Cui Y 2010 Nano Lett. 10 329
[18]Cha J J, Kong D, Hong S S, Analytis J G, Lai K and Cui Y 2012 Nano Lett. 12 1107
[19]He L, Xiu F X, Wang Y, Fedorov A V, Huang G, Kou X F, Lang M, Beyermann W P, Zou J and Wang K L 2011 J. Appl. Phys. 109 103702
[20]Zhang C, Liu Y, Yuan X, Wang W, Liang S and Xiu F 2015 Nano Lett. 15 2161
[21]Bao L H, He L, Meyer N, Kou X F, Zhang P, Chen Z G, Fedorov A V, Zou J, Riedemann T M and Lograsso T A 2012 Sci. Rep. 2 726
[22]He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q and Zhang F C 2011 Phys. Rev. Lett. 106 166805
[23]van Hove J M, Pukite P R and Cohen P I 1985 J. Vac. Sci. Technol. B 3 563
[24]Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[25]Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602
[26]Matsuo S, Koyama T, Shimamura K, Arakawa T, Nishihara Y, Chiba D, Kobayashi K, Ono T, Chang C, He K, Ma X C and Xue Q K 2012 Phys. Rev. B 85 075440
[27]Analytis J G, McDonald R D, Riggs S C, Chu J, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960
[28]Ohta E and Sakata M 1979 Solid-State Electron. 22 677
[29]Taskin A A and Ando Y 2009 Phys. Rev. B 80 085303
[30]Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nanotechnol. 6 216
[31]Eto K, Ren Z, Taskin A A, Segawa K and Ando Y 2010 Phys. Rev. B 81 195309
[32]Taskin A A, Yang F, Sasaki S, Segawa K and Yoichi A 2014 Phys. Rev. B 89 121302
[33]Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[34]Fang L, Jia Y, Miller D J, Latimer M L, Xiao Z L, Welp U, Crabtree G W and Kwok W K 2012 Nano Lett. 12 6164
[35]Hong S S, Cha J J, Kong D and Cui Y 2012 Nat. Commun. 3 757
[36]Analytis J G, Chu J, Chen Y L, Corredor F, McDonald R D, Shen Z X and Fisher I R 2010 Phys. Rev. B 81 205407
Related articles from Frontiers Journals
[1] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 026201
[2] De-Min Zhao, Jian-Lin Liu. New Insights on the Deflection and Internal Forces of a Bending Nanobeam[J]. Chin. Phys. Lett., 2017, 34(9): 026201
[3] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 026201
[4] WAN Lei, GAO Tao, MA Shi-Jia, LU Peng-Fei, LI Peng. First-Principles Study of Ag-Doped GaAs Nanowires[J]. Chin. Phys. Lett., 2013, 30(6): 026201
[5] ZENG Ya-Ping, WANG Yan-Guo, QU Bai-Hua, and YU Hong-Chun. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating[J]. Chin. Phys. Lett., 2012, 29(8): 026201
[6] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 026201
[7] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 026201
[8] XIE Shi-Feng, CHEN Shang-Da**, SOH Ai-Kah . The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires[J]. Chin. Phys. Lett., 2011, 28(6): 026201
[9] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 026201
[10] YU Yan-Long, ZHENG Li-Hui, XU Xin, SUN Hong-Yu** . Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template[J]. Chin. Phys. Lett., 2010, 27(10): 026201
[11] ZHANG Dong-Dong, XUE Cheng-Shan, ZHUANG Hui-Zhao, HUANG Ying-Long, WANG Zou-Ping, WANG Ying, GUO Yong-Fu. Fabrication and Characterization of Mg-Doped GaN Nanowires[J]. Chin. Phys. Lett., 2008, 25(11): 026201
[12] NIE Chao, ZHANG Rong, XIE Zi-Li, XIU Xiang-Qiang, LIU Bin, FU De-Yi, LIU Qi-Jia, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Synthesis of [100] Wurtzite InN Nanowires and [011] Zinc-Blende InN Nanorods[J]. Chin. Phys. Lett., 2008, 25(5): 026201
[13] Cheng Zeng, Yi Li, Jin-Song Xia. Controllable Fabrication of GeSi Nanowires in Diameter of About 10nm Using the Top-Down Approach[J]. Chin. Phys. Lett., 2017, 34(11): 026201
Viewed
Full text


Abstract