FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Spectral-Phase-Modulated Cross-Polarized Wave for Chirped Pulse Amplifier with High Contrast Ratio |
Shuang Qin1, Zhao-Hua Wang1**, Shuai-Shuai Yang2, Zhong-Wei Shen1, Quan-Li Dong2, Zhi-Yi Wei1** |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025
|
|
Cite this article: |
Shuang Qin, Zhao-Hua Wang, Shuai-Shuai Yang et al 2017 Chin. Phys. Lett. 34 024205 |
|
|
Abstract We demonstrate a high-quality cross-polarized-wave filter based on spectral phase modulation. Driven by well-compressed spectral-phase fully-compensated fundamental laser pulses, the filter stretches the pulse bandwidth from 35 nm to 70 nm with a conversion efficiency of 20%. After implementing the filter into a femtosecond TW Ti:sapphire laser system, we generate 40 mJ output pulse energy with pulse duration of 18.9 fs. The temporal contrast of the compressed pulse is enhanced to 10$^{9}$.
|
|
Received: 17 November 2016
Published: 25 January 2017
|
|
PACS: |
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
87.57.cj
|
(Contrast)
|
|
|
Fund: Supported by the National Key Basic Research Program of China under Grant No 2013CB922402, the National Natural Science Foundation of China under Grant Nos 61575217 and 11434016, the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant Nos KJZD-EW-L11-03 and QYZDJ-SSW-JSC006, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16030200. |
|
|
[1] | Donna S and Gerard M 1985 Opt. Commun. 56 3 | [2] | Ed Gerstner 2007 Nature 446 7131 | [3] | Mourou G, Korn G, Sandner W et al 2011 ELI-Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers (Berlin: THOSS Media GmbH) p 118 | [4] | Chvykov V, Rousseau P, Reed S et al 2006 Opt. Lett. 31 1456 | [5] | Andreev A A, Sonobe R, Kawata S et al 2006 Plasma Phys. Control. Fusion 48 1605 | [6] | Fuchs J, Antici P, d'Humieres E et al 2006 Nat. Phys. 2 1 | [7] | Wojtkiewicz J and Durfee C 2004 Opt. Express 12 1383 | [8] | Kalashnikov M P, Risse E, Schönnagel H et al 2005 Opt. Lett. 30 923 | [9] | Thaury C, Quéré F, Geindre J P et al 2007 Nat. Phys. 3 424 | [10] | Jullien A, Albert O, Burgy F et al 2005 Opt. Lett. 30 920 | [11] | Jullien A, Canova L, Albert O et al 2007 Appl. Phys. B 87 595 | [12] | Wang J Z, Huang Y S, Xu Y et al 2012 Acta Phys. Sin. 61 9 (in Chinese) | [13] | Ramirez L P, Papadopoulos D N, Pellegrina A et al 2011 Opt. Express 19 1 | [14] | Minkovski N, Saltiel S M, Petrov G I et al 2002 Opt. Lett. 27 22 | [15] | Minkovski N, Petrov G I, Saltiel S M et al 2004 J. Opt. Soc. Am. B 21 1659 | [16] | Canova L, Albert O, Forget N et al 2008 Appl. Phys. B 93 443 | [17] | Amplitude Techniques: Data Sheet of Sequoia 800[EB/OL] http://www.amplitude-technologies.com/?fond=produit&id_produit=15&id_rubrique= |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|