Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 024204    DOI: 10.1088/0256-307X/34/2/024204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System
Wei-Jie Mai1,2, Yi-Lin Wang1,2, Yun-Yun Zhang1,2, Lu-Na Cui1,2, Li Yu1,2**
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang et al  2017 Chin. Phys. Lett. 34 024204
Download: PDF(550KB)   PDF(mobile)(545KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A symmetric plasmonic structure consisting of metal–insulator–metal waveguide, groove and slot cavities is studied, which supports double Fano resonances deriving from two different mechanisms. One of the Fano resonances originates from the interference between the resonances of groove and slot cavities, and the other comes from the interference between slot cavities. The spectral line shapes and the peaks of the double Fano resonances can be modulated by changing the length of the slot cavities and the height of the groove. Furthermore, the wavelength of the resonance peak has a linear relationship with the length of the slot cavities. The proposed plasmonic nanosensor possesses a sensitivity of 800 nm/RIU and a figure of merit of 3150, which may have important applications in switches, sensors, and nonlinear devices.
Received: 23 September 2016      Published: 25 January 2017
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  52.25.Fi (Transport properties)  
  42.82.Gw (Other integrated-optical elements and systems)  
Fund: Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041 and 11574035, and the State Key Laboratory of Information Photonics and Optical Communications.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/024204       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/024204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Jie Mai
Yi-Lin Wang
Yun-Yun Zhang
Lu-Na Cui
Li Yu
[1]Barnes W L, Dereux A and Tw E 2003 Nature 424 824
[2]Shang C, Chen Z, Wang L L, Zhao Y F, Duan G Y and Yu L 2014 Chin. Phys. Lett. 31 114202
[3]Zhang X Y, Wang L L, Chen Z, Cui L N, Shang C, Zhao Y F, Duan G Y, Liu J B and Yu L 2015 Chin. Phys. Lett. 32 054209
[4]Yun B, Hu G, Zhang R and Cui Y 2016 J. Opt. 18 055002
[5]Chen J, Li Z, Zou Y, Deng Z, Xiao J and Gong Q 2013 Plasmonics 8 1627
[6]Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[7]Hao F, Sonnefraud Y, Van D P, Maier S A, Halas N J and Nordlander P 2008 Nano Lett. 8 3983
[8]Qi J, Chen Z, Jing C, Li Y, Qiang W, Xu J and Suan Q 2014 Opt. Express 22 14688
[9]Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J and Sun Q 2013 Chin. Phys. Lett. 30 057301
[10]Shegai T, Chen S, Miljkovi V D, Zengin G, Johansson P and Kall M 2011 Nat. Commun. 2 481
[11]Wen K, Hu Y, Chen L, Zhou J, Lei L and Guo Z 2015 Plasmonics 10 27
[12]Lu H, Liu X, Mao D, Gong Y and Wang G 2011 Opt. Lett. 36 3233
[13]Lu H, Liu X, Mao D and Wang G 2012 Opt. Lett. 37 3780
[14]Collin S, Vincent G, Haidar R, Bardou N, Rommeluere S and Pelouard J L 2010 Phys. Rev. Lett. 104 027401
[15]Zhang C X, Nie Y H and Liang J Q 2008 Chin. Phys. B 17 2670
[16]Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
[17]Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P and Halas N J 2012 Nano Lett. 12 1058
[18]Verellen N, Sonnefraud Y, Sobhani H, Hao F Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2009 Nano Lett. 9 1663
[19]Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[20]Chen J, Li Z, Zhang X, Xiao J and Gong Q 2013 Sci. Rep. 3 1451
[21]Guevara M L L D, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[22]Wu C, Khanikaev A B and Shvets G 2011 Phys. Rev. Lett. 106 107403
[23]Eickhoff C, Teichmann M and Weinelt M 2011 Phys. Rev. Lett. 107 176804
[24]Shuai Y, Zhao D, Singh Chadha A, Seo J H, Yang H, Fan S, Ma Z and Zhou W 2013 Appl. Phys. Lett. 103 241106
[25]Han Z and Si B 2011 Opt. Express 19 3251
[26]Becker J, Trügler A, Jakab A, Hohenester U and Sonnnichsen C 2010 Plasmonics 5 161
[27]Liu N, Weiss T and Mesch M 2010 Nano Lett. 10 1103
[28]Li S, Zhang Y, Song X, Wang Y and Yu L 2016 Opt. Express 24 15351
Related articles from Frontiers Journals
[1] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 024204
[2] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 024204
[3] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 024204
[4] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 024204
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 024204
[6] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 024204
[7] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 024204
[8] ZHANG Xi-Lin, LIU Song-Tao, LU Dan, ZHANG Rui-Kang, JI Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response[J]. Chin. Phys. Lett., 2015, 32(5): 024204
[9] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 024204
[10] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 024204
[11] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 024204
[12] HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li, XIAO Jing-Hua. Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides[J]. Chin. Phys. Lett., 2014, 31(09): 024204
[13] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 024204
[14] ZHANG Xi-Lin, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP[J]. Chin. Phys. Lett., 2014, 31(06): 024204
[15] TANG Dong-Hua, DING Wei-Qiang. Fano Resonance by Symmetry Breaking Stub in a Metal-Dielectric-Metal Waveguide[J]. Chin. Phys. Lett., 2014, 31(05): 024204
Viewed
Full text


Abstract