Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 024203    DOI: 10.1088/0256-307X/34/2/024203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching
Bing-Xi Xiang1,2†, Lei Wang3†, Yu-Jie Ma1,2, Li Yu1,2, Huang-Pu Han3, Shuang-Chen Ruan1**
1Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
3School of Physics, Shandong University, Jinan 250100
Cite this article:   
Bing-Xi Xiang, Lei Wang, Yu-Jie Ma et al  2017 Chin. Phys. Lett. 34 024203
Download: PDF(952KB)   PDF(mobile)(938KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on the fabrication of the 10-mm-long lithium niobate ridge waveguide and its supercontinuum generation at near-visible wavelengths (around 800 nm). The waveguides are fabricated by a combination of MeV copper ion implantation followed by wet etching in a proton exchanged lithium niobate planar waveguide. Using a mode-locked Ti:sapphire laser with a central wavelength of 800 nm, the generated broadest supercontinuum through the ridge waveguides spans 302 nm (at $-$30 dB points), from 693 to 995 nm. Temporal coherence properties of the supercontinuum are experimentally studied by a Michelson interferometer and the coherence length of the broadest supercontinuum is measured to be 5.2 μm. Our results offer potential for a compact and integrated supercontinuum source for applications including bio-imaging, spectroscopy and optical communication.
Received: 03 November 2016      Published: 25 January 2017
PACS:  42.65.Wi (Nonlinear waveguides)  
  61.80.Jh (Ion radiation effects)  
  42.70.Mp (Nonlinear optical crystals)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61575129 and 11375105, the Postdoctoral Science Foundation of China under Grant No 2016M602511, the Shenzhen Science and Technology Planning under Grant No JCYJ20160422142912923, and the State Key Laboratory of Nuclear Physics and Technology, Peking University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/024203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/024203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing-Xi Xiang
Lei Wang
Yu-Jie Ma
Li Yu
Huang-Pu Han
Shuang-Chen Ruan
[1]Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[2]Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C and Russell P St J 2015 Nat. Photon. 9 133
[3]Yan P, Shu J, Ruan S, Zhao J, Zhao J, Du C, Guo C, Wei H and Luo J 2011 Opt. Express 19 4985
[4]Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T and Hänsch T W 2000 Phys. Rev. Lett. 84 5102
[5]Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[6]Mollenauer L F, Stolen R H, Gordon J P and Tomlinson W J 1983 Opt. Lett. 8 289
[7]Morioka T, Mori K and Saruwatari M 1993 Electron. Lett. 29 862
[8]Tu H and Boppart S A 2013 Laser Photon. Rev. 7 628
[9]Drexler W, Morgner U, Kartner F X, Pitris C, Boppart S A, Li X D, Ippen E P and Fujimoto J G 1999 Opt. Lett. 24 1221
[10]Morgner U, Drexler W, Kärtner F X, Li X D, Pitris C, Ippen E P and Fujimoto J G 2000 Opt. Lett. 25 111
[11]Mikami H, Shiozawa M, Shirai M and Watanabe K 2015 Opt. Express 23 2872
[12]Xu Q, Shi K and Liu Z 2011 J. Raman Spectrosc. 42 2100
[13]Koyama F 2006 J. Lightwave Technol. 24 4502
[14]Evans C C, Shtyrkova K, Bradley J D B, Reshef O, Ippen E and Mazur E 2013 Opt. Express 21 18582
[15]Hadfield R H 2009 Nat. Photon. 3 696
[16]Dave U D, Uvin S, Kuyken B, Selvaraja S, Leo F and Roelkens G 2013 Opt. Express 21 32032
[17]Xiang B, Ren X, Ruan S, Wang L, Yan P, Han H, Wang M and Yin J 2016 Sci. Rep. 6 31612
[18]Wooten E L, Kissa K M, Yi-Yan A, Murphy E J, Lafaw D A, Hallemeier P F, Maack D, Attanasio D V, Fritz D J, McBrien G J and Bossi D E 2000 IEEE J. Sel. Top. Quantum Electron. 6 69
[19]Dhar A and Mansingh A 1990 J. Appl. Phys. 68 5804
[20]Reddy J N B, Elizabeth S, Bhat H L, Venkatram N and Rao D N 2009 Opt. Mater. 31 1022
[21]Guo H, Zhou B, Steinert M, Setzpfandt F, Pertsch T, Chung H, Chen Y and Bache M 2015 Opt. Lett. 40 629
[22]Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E and Hartl I 2011 Opt. Lett. 36 3912
[23]Langrock C, Fejer M M, Hartl I and Fermann M E 2007 Opt. Lett. 32 2478
[24]Guarino A, Poberaj G, Rezzonico D, Degl'Innocenti R and Gunter P 2007 Nat. Photon. 1 407
[25]Hu H, Ricken R and Sohler W 2010 Appl. Phys. B 98 677
[26]Majkić A, Koechlin M, Poberaj G and Günter P 2008 Opt. Express 16 8769
[27]Hu H, Ricken R, Sohler W and Wehrspohn R B 2007 IEEE Photon. Technol. Lett. 19 417
[28]Rabiei P and Steier W H 2005 Appl. Phys. Lett. 86 161115
[29]Yang W S, Lee H Y, Kim W K and Yoon D H 2005 Opt. Mater. 27 1642
[30]Park W J, Yang W S, Kim W K, Lee H Y, Lim J W, Isshiki M and Yoon D H 2006 Opt. Mater. 28 216
[31]Gischkat T, Hartung H, Schrempel F, Kley E B, Tünnermann A and Wesch W 2009 Microelectron. Eng. 86 910
[32]Schrempel F, Gischkat T, Hartung H, Kley E B and Wesch W 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 250 164
[33]Gill D M, Jacobson D, White C A, Jones C D W, Shi Y, Minford W J and Harris A 2004 J. Lightwave Technol. 22 887
[34]Nicola P D, Sugliani S, Montanari G B, Menin A, Vergani P, Meroni A, Astolfi M, Borsetto M, Consonni G, Longone R, Nubile A, Chiarini M, Bianconi M and Bentini G G 2013 J. Lightwave Technol. 31 1482
[35]Hartung H, Kley E B, Tünnermann A, Gischkat T, Schrempel F and Wesch W 2008 Opt. Lett. 33 2320
[36]Sun J and Xu C Q 2012 Opt. Lett. 37 2028
[37]Chiang K S 1985 J. Lightwave Technol. LT-3 385
[38]Ziegler J F Computer Code SRIM http://www.srim.org
[39]Bianconi M, Bentini G G, Chiarini M, De P, Montanari G B, Menin A, Nubile A and Sugliani S 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3452
[40]Wang L, Chen F, Wang X L, Wang K M, Jiao Y, Wang L L, Li X S, Lu Q M, Ma H J and Nie R 2007 J. Appl. Phys. 101 053112
[41]Wang L, Haunhorst C E, Volk M F, Chen F and Kip D 2015 Opt. Express 23 30188
[42]Psaila N D, Thomson R R, Bookey H T, Shen S, Chiodo N, Osellame R, Cerullo G, Jha A and Kar A K 2007 Opt. Express 15 15776
[43]Poberaj G, Hu H, Sohler W and Gunter P 2012 Laser Photon. Rev. 6 488
[44]Kano H and Hamaguchi H 2003 Opt. Lett. 28 2360
[45]Zeylikovich I, Kartazaev V and Alfano R R 2005 J. Opt. Soc. Am. B 22 1453
Related articles from Frontiers Journals
[1] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 024203
[2] Mu-Tian Cheng, Gen-Long Ye, Wei-Wei Zong, Xiao-San Ma. Single Photon Scattering in a Pair of Waveguides Coupled by a Whispering-Gallery Resonator Interacting with a Semiconductor Quantum Dot[J]. Chin. Phys. Lett., 2016, 33(02): 024203
[3] WANG Hong-Cheng, LING Dong-Xiong, HE Ying-Ji. Multipeaked Solitons in Parity-Time Complex Superlattice with Dual Periods[J]. Chin. Phys. Lett., 2015, 32(07): 024203
[4] ZHOU Tao, ZANG Xiao-Fei, CHEN Jing. Single-Photon Transport Properties in Coupled-Resonator Waveguide with Nonlocal Coupling to a Whispering-Gallery Resonator Interacting with Two Separated Atoms[J]. Chin. Phys. Lett., 2014, 31(07): 024203
[5] LV Ning, ZHANG Wei, GUO Yuan, ZHOU Qiang, HUANG Yi-Dong, PENG Jiang-De . End-Output Coupling Efficiency Measurement of Silicon Wire Waveguides Based on Correlated Photon Pair Generation[J]. Chin. Phys. Lett., 2013, 30(7): 024203
[6] CHENG Mu-Tian, DING Meng-Ting, SONG Yan-Yan, LUO Ya-Qin . Single-Photon Transmission Characteristics in a Pair of Coupled-Resonator Waveguides Linked by a Nanocavity Containing a Quantum Emitter[J]. Chin. Phys. Lett., 2013, 30(5): 024203
[7] CHENG Mu-Tian,SONG Yan-Yan,YU Long-Bao**. Transmission Characteristics in a Coupled-Resonator Waveguide Interacting with a Two-Mode Nanocavity Containing a Three-Level Emitter[J]. Chin. Phys. Lett., 2012, 29(5): 024203
[8] LANG Jia-Hong* . Controllable Optical Switch in a One-Dimensional Resonator Waveguide Coupled to a Whispering-Gallery Resonator[J]. Chin. Phys. Lett., 2011, 28(10): 024203
[9] LUO Ya-Qin**, SONG Yan-Yan, GU Ling-Ming, LANG Jia-Hong, MA Xiao-San . Voltage-Controlled Scattering of Single Photons in a One-Dimensional Waveguide[J]. Chin. Phys. Lett., 2011, 28(7): 024203
[10] LIU Xing, LIU Wei, YIN Jun, QU Jun-Le, LIN Zi-Yang, NIU Han-Ben** . Optimization of Supercontinuum Sources for Ultra-Broadband T-CARS Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(3): 024203
[11] CHENG Jie-Rong, ZHANG Wei, ZHOU Qiang, FENG Xue, HUANG Yi-Dong, PENG Jiang-De . Correlated Photon Pair Generation in Silicon Wire Waveguides at 1.5 μm[J]. Chin. Phys. Lett., 2010, 27(12): 024203
[12] GAO Shi-Ming, **, TIEN En-Kuang, SONG Qi, HUANG Yue-Wang, Salih Kagan KALYONCU. Experiment of C-Band Wavelength Conversion in a Silicon Waveguide Pumped by Dispersed Femtosecond Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(12): 024203
[13] WANG Lei, LU Qing-Ming, MA Hong-Ji. Modal Characterization of a Planar Waveguide in Bismuth Borate Crystal[J]. Chin. Phys. Lett., 2009, 26(6): 024203
[14] SUN Jie, ZHU Gui-Hua, SUN Xiao-Qiang, LI Tong, GAO Wei-Nan, ZHANG Da-Ming, HOU A-Lin. High Cost Performance Organic-Inorganic Hybrid Material for Electro-optic Devices[J]. Chin. Phys. Lett., 2009, 26(2): 024203
[15] LU Ke-Qing, ZHANG Mei-Zhi, ZHAO Wei, YANG Yan-Long, YANG Yang, ZHANG Yu-Hong, LIU Xue-Ming, ZHANG Yan-Peng, SONG Jian-Ping. Waveguides Induced by Screening-Photovoltaic Solitons in Biased Photorefractive--Photovoltaic Crystals[J]. Chin. Phys. Lett., 2006, 23(10): 024203
Viewed
Full text


Abstract