Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 020301    DOI: 10.1088/0256-307X/34/2/020301
GENERAL |
An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer
A. Ben-Israel1, L. Knips2,3, J. Dziewior2,3, J. Meinecke2,3, A. Danan1, H. Weinfurter2,3, L. Vaidman1**
1Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching 85748, Germany
3Department für Physik, Ludwig-Maximilians-Universität, München 80797, Germany
Cite this article:   
A. Ben-Israel, L. Knips, J. Dziewior et al  2017 Chin. Phys. Lett. 34 020301
Download: PDF(249KB)   PDF(mobile)(247KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We argue that the modification proposed by Li et al. [Chin. Phys. Lett. 32 (2015) 050303] to the experiment of Danan et al. [Phys. Rev. Lett. 111 (2013) 240402] does not test the past of the photon as characterized by local weak traces. Instead of answering the questions: (i) were the photons in $A$? (ii) were the photons in $B$? and (iii) were the photons in $C$? the proposed experiment measures a degenerate operator answering the questions: (i) were the photons in $A$? and (ii) were the photons in $B$ and $C$ together? A negative answer to the last question does not tell us if photons were present in $B$ or $C$. On the other hand, a simple variation of the proposal by Li et al. does provide conceptually better evidence for the past of the pre- and post-selected photon, but this evidence will be in agreement with the results of Danan et al.
Received: 07 August 2016      Published: 25 January 2017
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ca (Formalism)  
  42.25.Hz (Interference)  
Fund: Supported by the German-Israeli Foundation for Scientific Research and Development under Grant No I-1275-303.14.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/020301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Ben-Israel
L. Knips
J. Dziewior
J. Meinecke
A. Danan
H. Weinfurter
L. Vaidman
[1]Li F, Hashmi F A, Zhang J X and Zhu S Y 2015 Chin. Phys. Lett. 32 050303
[2]Danan A, Farfurnik D, Bar-Ad S and Vaidman L 2013 Phys. Rev. Lett. 111 240402
[3]Bohm D 1952 Phys. Rev. 85 166
[4]Wheeler J A 1978 Mathematical Foundations of Quantum Theory (New York: Academic Press) p 9
[5]Vaidman L 2013 Phys. Rev. A 87 052104
[6]Aharonov Y and Vaidman L 1991 J. Phys. A 24 2315
[7]Aharonov Y, Anandan J, Popescu S and Vaidman L 1990 Phys. Rev. Lett. 64 2965
[8]Potoček V and Ferenczi G 2015 Phys. Rev. A 92 023829
[9]Vaidman L 2016 Phys. Rev. A 93 017801
[10]Salih H 2015 Front. Phys. 3 47
[11]Vaidman L, Danan A, Farfurnik D and Bar-Ad S 2015 Front. Phys. 3 48
[12]Matsuda N et al 2009 Nat. Photon. 3 95
[13]Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 020301
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 020301
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 020301
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 020301
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 020301
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 020301
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 020301
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 020301
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 020301
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 020301
[11] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 020301
[12] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 020301
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 020301
[14] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 020301
[15] XU Feng, WANG Li-Fei, CUI Xiao-Dong. Quantum Interference by Entangled Trajectories[J]. Chin. Phys. Lett., 2015, 32(08): 020301
Viewed
Full text


Abstract