ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
An Isotropic Empirical Intermolecular Potential for Solid H$_{2}$ and D$_{2}$: A Classical Molecular Calculation |
Li Yang1** , Hui Liu1, Hui-Ling Zhou1, Qing-Qiang Sun1,2, Shu-Ming Peng3, Xing-Gui Long3, Xiao-Song Zhou3, Xiao-Tao Zu1, Fei Gao4 |
1School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 2School of Science, Huaihai Institute of Technology, Lianyungang 222005 3Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 4Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 USA
|
|
Cite this article: |
Li Yang, Hui Liu, Hui-Ling Zhou et al 2017 Chin. Phys. Lett. 34 123401 |
|
|
Abstract We develop an isotropic empirical potential for molecular hydrogen (H$_{2}$) and deuterium (D$_{2}$) by fitting to solid-state data, which is appropriate for classical molecular dynamics (CMD) approach. Based on the prior isotropic intermolecular potential used in self-consistent phonon approximation, a zero-point energy term and an embedded energy term are introduced to describe the H$_{2}$–H$_{2}$ and D$_{2}$–D$_{2}$ interactions in CMD simulations. The structure, cohesive energy and elastic properties of solid H$_{2}$ (D$_{2})$ are used as the fitting database. The present method is tested by calculating the melting point of solid H$_{2}$, and the pressure and bulk elastic modulus as a function of volume. The developed potentials well reproduce many properties of solid H$_{2}$ and D$_{2}$.
|
|
Received: 03 August 2017
Published: 24 November 2017
|
|
PACS: |
34.20.Gj
|
(Intermolecular and atom-molecule potentials and forces)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
62.20.de
|
(Elastic moduli)
|
|
61.50.Lt
|
(Crystal binding; cohesive energy)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No U1430109. |
|
|
[1] | Hurricane O A, Callahan D A and Casey D T 2014 Nature 506 343 | [2] | Ye Y T, Yang L, Yang T L, Nie J L, Peng S M, Long X G, Zu X T and Du J C 2015 Eur. Phys. J. B 88 161 | [3] | Sun Q Q, Ye Y T, Yang T L, Yang L, Peng S M, Long X G, Zhou X S, Zu X T and Du J C 2015 Eur. Phys. J. B 88 332 | [4] | Guerrero C, Cuesta-Lopez S and Perlado J M 2013 EPJ. Web Conf. 59 16004 | [5] | Bruce T A 1972 Phys. Rev. B 5 4170 | [6] | Silvera I F and Goldman V V 1978 J. Chem. Phys. 69 4209 | [7] | Silvera I F 1980 Rev. Mod. Phys. 52 393 | [8] | Curzon A E and Mascall A J 1965 Brit. J. Appl. Phys. 16 1301 | [9] | Gao F, Deng H Q, Heinisch H L and Kurtz R J 2011 J. Nucl. Mater. 418 115 | [10] | Brenner D W 1990 Phys. Rev. B 42 9458 | | Matsubara K, Sugihara K and Tsuzuku T 1992 Phys. Rev. B 46 1948 | [11] | Gao F, Bacon D J, Flewitt P E J and Lewis T A 1997 J. Nucl. Mater. 249 77 | [12] | Goldman V V 1977 J. Low Temp. Phys. 26 203 | [13] | Morn M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press) | [14] | Nielsen M 1973 Phys. Rev. B 7 1626 | [15] | Wanner R and Meyer H 1973 J. Low Temp. Phys. 11 715 | [16] | Ebner C and Sung C C 1972 Phys. Rev. A 5 2625 | [17] | https://www.webelements.com/hydrogen/ | [18] | Felsteiner J 1965 Phys. Rev. Lett. 15 1025 | [19] | Schuch A F and Mills R L 1966 Phys. Rev. Lett. 16 616 | [20] | Li X C, Shu X L, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12 | [21] | Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G and Kurtz R J 2009 Phys. Rev. B 80 054104 | [22] | Goldman V V 1979 J. Low Temp. Phys. 36 521 | [23] | Anderson M S and Swenson C A 1974 Phys. Rev. B 10 5184 | [24] | Silvera I F, Driessen A and De Waal J A 1978 Phys. Lett. A 68 207 | [25] | Stewart J W 1956 J. Chem. Phys. Solids 1 146 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|