CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of Optical Microcavity on Absorption Behavior of Homo-Tandem Organic Solar Cells |
Guo-Long Li1**, Hao Wang1, Jing-Rong Meng1, Jin Li1, Li-Jun He1, Ming-Kui Wang2 |
1Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yinchuan 750021 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
|
|
Cite this article: |
Guo-Long Li, Hao Wang, Jing-Rong Meng et al 2017 Chin. Phys. Lett. 34 118801 |
|
|
Abstract The optical microcavity effect of the homo-tandem solar cells is explored utilizing the transfer matrix method. Ultrathin silver can reduce the deadzone effect compared with graphene and PH1000, and leads to a factor of 1.07 enhancement for an electrical field in a metal microcavity. The enhancement is considered to be the fact that strong exciton-photon coupling occurs in the microcavity due to ultrathin Ag. On the basis of the optical enhancement effect, optical behaviors are manipulated by varying the microcavity length. It is confirmed that ultrathin silver can serve as an ideal interconnection layer as the active layer is $\sim$150 nm thick and the thickness ratio between front and rear active layers lies between 1:1 and 1:2.
|
|
Received: 18 August 2017
Published: 25 October 2017
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61565015, and the Western Light Talent Training Program of Chinese Academy of Sciences. |
|
|
[1] | You J, Dou L, Yoshimura K et al 2013 Nat. Commun. 4 1446 | [2] | Green M A, Emery K, Hishikawa Y et al 2015 Prog. Photovoltaics 23 1 | [3] | Umeyama T, Miyata T, Jakowetz A C et al 2017 Chem. Sci. 8 181 | [4] | Li M, Gao K, Wan X et al 2016 Nat. Photon. 11 85 | [5] | Dimitrov S D, Schroeder B C, Nielsen C B et al 2016 Polymers 8 14 | [6] | Ball J M, Stranks S D, Hörantner M T et al 2015 Energy Environ. Sci. 8 602 | [7] | Kang M G, Xu T, Park H J et al 2010 Adv. Mater. 22 4378 | [8] | Chen C C, Chang W H, Yoshimura K et al 2014 Adv. Mater. 26 5670 | [9] | Gao Y, Le Corre V M, Gaïtis A et al 2016 Adv. Mater. 28 3366 | [10] | Liu Y, Chen C C, Hong Z et al 2013 Sci. Rep. 3 3356 | [11] | L Gomez De Arco, Zhang Y, Schlenker C W K et al 2010 ACS Nano 4 2865 | [12] | Kang M G, Kim M S, Kim J and Guo L J 2008 Adv. Mater. 20 4408 | [13] | Na S I, Kim S S and Kim D Y 2008 Adv. Mater. 20 4061 | [14] | Zou J, Li C Z, Chang C Y et al 2014 Adv. Mater. 26 3618 | [15] | Long Y 2009 Appl. Phys. Lett. 95 193301 | [16] | Brehier A, Parashkov R, Lauret J S et al 2006 Appl. Phys. Lett. 89 171110 | [17] | Gambino S, Genco A, Accorsi G et al 2015 Appl. Mater. Today 1 33 | [18] | Liao S H, Jhuo H J, Cheng Y S et al 2013 Adv. Mater. 25 4766 | [19] | Huang W, Gann E, Thomsen L et al 2015 Adv. Energy Mater. 5 1401259 | [20] | Spano F C 2015 J. Chem. Phys. 142 184707 | [21] | Song Y, Clafton S N, Pensack R D, Kee T W and Scholes G D 2014 Nat. Commun. 5 4933 | [22] | Bencheikh F, Ducheí D, Ruiz C M et al 2015 J. Phys. Chem. C 119 24643 | [23] | Min C, Li J, Veronis G et al 2010 Appl. Phys. Lett. 96 133302 | [24] | Hoppe H, Sariciftci N S and Meissner D 2002 Mol. Cryst. Liq. Cryst. 385 113 | [25] | Lidzey D G, Bradley D D C, Skolnick M S et al 1998 Nature 395 53 | [26] | Zuo L, Chueh C, Xu Y et al 2014 Adv. Mater. 26 6778 | [27] | He Z C, Zhong C M, Su S J et al 2012 Nat. Photon. 6 593 | [28] | Veldman D, Meskers S C J and Janssen R A J 2009 Adv. Funct. Mater. 19 1939 | [29] | Cnops K, Rand B P, Cheyns D et al 2014 Nat. Commun. 5 3406 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|