Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 118504    DOI: 10.1088/0256-307X/34/11/118504
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Influence of Tilted Angle on Effective Linear Energy Transfer in Single Event Effect Tests for Integrated Circuits at 130nm Technology Node
Le-Qing Zhang1,2, Jian Lu3, Jia-Ling Xu3, Xiao-Nian Liu1,2, Li-Hua Dai1,2, Yi-Ran Xu1,2, Da-Wei Bi1**, Zheng-Xuan Zhang1,
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
3Shanghai Engineering Center for Microsatellites, Chinese Academy of Sciences, Shanghai 201203
Cite this article:   
Le-Qing Zhang, Jian Lu, Jia-Ling Xu et al  2017 Chin. Phys. Lett. 34 118504
Download: PDF(463KB)   PDF(mobile)(462KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130 nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130 nm technology node is obtained. Tests of tilted angles $\theta =0^{\circ}$, 30$^{\circ}$ and 60$^{\circ}$ with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40 MeVcm$^{2}$/mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to $\cos \theta$, furthermore the effective LET for SOI is more closely in inverse proportion to $\cos \theta$ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to $\cos \theta$ very well, which is also specifically explained.
Received: 14 August 2017      Published: 25 October 2017
PACS:  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  29.27.Fh (Beam characteristics)  
Fund: Supported by the Key Laboratory of Microsatellites, Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/118504       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/118504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le-Qing Zhang
Jian Lu
Jia-Ling Xu
Xiao-Nian Liu
Li-Hua Dai
Yi-Ran Xu
Da-Wei Bi
Zheng-Xuan Zhang
[1]Zhang Y W, Guo G, Liu J C et al 2017 Chin. Phys. Lett. 34 073401
[2]Reed R A, Kinnison J, Pickel J C et al 2003 IEEE Trans. Nucl. Sci. 50 622
[3]Petersen E L, Pickel J C, Smith E C et al 1993 IEEE Trans. Nucl. Sci. 40 1888
[4]Duzellier S and Ecoffet R 1996 IEEE Trans. Nucl. Sci. 43 671
[5]Dodd P E, Shaneyfelt M R and Sexton F W 1997 IEEE Trans. Nucl. Sci. 44 2256
[6]Swift G M and Guertin S M 2000 IEEE Trans. Nucl. Sci. 47 2386
[7]Petersen E L, Langworthy J B and Diehl S E 1983 IEEE Trans. Nucl. Sci. 30 4533
[8]Dodd P E, Schwank J R, Shaneyfelt M R et al 2007 IEEE Trans. Nucl. Sci. 54 2303
[9]Reed R A, Weller R A, Mendenhall M H et al 2007 IEEE Trans. Nucl. Sci. 54 2312
[10]Li Y, He C, Zhao F et al 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 83
[11]Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R et al 2003 IEEE Trans. Nucl. Sci. 50 522
[12]Dodd P E, Shaneyfelt M R, Felix J A et al 2004 IEEE Trans. Nucl. Sci. 51 3278
[13]Calin T, Nicolaidis M and Velazco R 1996 IEEE Trans. Nucl. Sci. 43 2874
[14]Liu X N, Dai L H, Ning B X et al 2017 Chin. Phys. Lett. 34 016103
[15][Online]. Available: http://www.srim.org
[16]Petersen E L, Pickel J C, Adams J H et al 1992 IEEE Trans. Nucl. Sci. 39 1577
[17]Petersen E L 2007 IEEE Trans. Nucl. Sci. 54 1392
[18]Hang G M and Zhu G Q 2014 J. Math. Med. 27 48
Related articles from Frontiers Journals
[1] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 118504
[2] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 118504
[3] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 118504
[4] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 118504
[5] YU Guang, WU Chen-Fei, LU Hai, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou, HUANG Xiao-Ming. Frequency Performance of Ring Oscillators Based on a-IGZO Thin-Film Transistors[J]. Chin. Phys. Lett., 2015, 32(4): 118504
[6] Van Ha Nguyen, Hanjung Song. Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study[J]. Chin. Phys. Lett., 2015, 32(03): 118504
[7] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 118504
[8] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 118504
[9] ZHOU Ji-Chao, SONG Han-Jung. Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit[J]. Chin. Phys. Lett., 2013, 30(2): 118504
[10] FENG Chong, TANG Zhen-An, YU Jun. A Novel CMOS Device Capable of Measuring Near-Field Thermal Radiation[J]. Chin. Phys. Lett., 2012, 29(3): 118504
[11] WEI Rong-Shan, CHEN Jin-Feng, CHEN Shou-Chang, HE Ming-Hua. Reconfigurable Threshold Logic Element with SET and MOS Transistors[J]. Chin. Phys. Lett., 2012, 29(2): 118504
[12] WANG Wei, HUANG Bei-Ju, DONG Zan, LIU Hai-Jun, ZHANG Xu, GUAN Ning, CHEN Jin, GUO Wei-Lian, NIU Ping-Juan, CHEN Hong-Da. A Low-Voltage Silicon Light Emitting Device in Standard Salicide CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(4): 118504
[13] ZHONG Min, SONG Zhi-Tang, LIU Bo, FENG Song-Lin, CHEN Bomy. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device[J]. Chin. Phys. Lett., 2008, 25(2): 118504
[14] LIU Qi-Bin, SONG Zhi-Tang, ZHANG Kai-Liang, WANG Liang-Yong, FENG Song-Lin, CHEN Bomy. Damascene Array Structure of Phase Change Memory Fabricated with Chemical Mechanical Polishing Method[J]. Chin. Phys. Lett., 2006, 23(8): 118504
[15] LEE Chee-Wei, CHIN Mee-Koy. Room-Temperature Inductively Coupled Plasma Etching of InP Using Cl2N2 and Cl2/CH4/H2[J]. Chin. Phys. Lett., 2006, 23(4): 118504
Viewed
Full text


Abstract