Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 118501    DOI: 10.1088/0256-307X/34/11/118501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Influence of Total Ionizing Dose Irradiation on Low-Frequency Noise Responses in Partially Depleted SOI nMOSFETs
Chao Peng1,2**, Yun-Fei En1, Zhi-Feng Lei1, Yi-Qiang Chen1**, Yuan Liu1, Bin Li2
1Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610
2School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641
Cite this article:   
Chao Peng, Yun-Fei En, Zhi-Feng Lei et al  2017 Chin. Phys. Lett. 34 118501
Download: PDF(1564KB)   PDF(mobile)(1564KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Total ionizing dose effect induced low frequency degradations in 130 nm partially depleted silicon-on-insulator (SOI) technology are studied by $^{60}$Co $\gamma$-ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from $2.21\times10^{18}$ eV$^{-1}$cm$^{-3}$ to $3.59\times10^{18}$ eV$^{-1}$cm$^{-3}$ after irradiation.
Received: 19 July 2017      Published: 25 October 2017
PACS:  85.30.-z (Semiconductor devices)  
  61.80.-x (Physical radiation effects, radiation damage)  
  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
Fund: Supported by the National Postdoctoral Program for Innovative Talents under Grant No BX201600037, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090901048 and 2015B090912002, and the Distinguished Young Scientist Program of Guangdong Province under Grant No 2015A030306002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/118501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/118501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao Peng
Yun-Fei En
Zhi-Feng Lei
Yi-Qiang Chen
Yuan Liu
Bin Li
[1]AubertonHerve A J 1996 SOI: Materials to Systems (New York: IEEE)
[2]Cheng S et al 2017 Chin. Phys. Lett. 34 068101
[3]Tseng Y C et al 2001 IEEE Trans. Electron Devices 48 1428
[4]Simoen E and Claeys C 1999 Solid-State Electron. 43 865
[5]Jomaah J and Balestra F 2004 IEEE Proc.-Circuits Devices Syst. 151 111
[6]Vandamme L K J, Li X S and Rigaud D 1994 IEEE Trans. Electron Devices 41 1936
[7]Mercha A, Rafi J M, Augendre E and Claeys C 2003 IEEE Trans. Electron Devices 50 1675
[8]Lukyanchikova N B et al 2003 J. Appl. Phys. 94 4461
[9]Dieudonne F, Jomaah J and Balestra F 2002 IEEE Electron Device Lett. 23 737
[10]Mercha A, Simoen E, Van Meer H and Claeys C 2003 Appl. Phys. Lett. 82 1790
[11]Peng C et al 2013 Chin. Phys. Lett. 30 098502
[12]Simoen E et al 2013 IEEE Trans. Nucl. Sci. 60 1970
[13]Schwank J R et al 2003 IEEE Trans. Nucl. Sci. 50 522
[14]Simoen E and Claeys C 1996 Solid-State Electron. 39 949
[15]Fleetwood D M et al 2002 IEEE Trans. Nucl. Sci. 49 2674
[16]Liu Y et al 2015 Chin. Phys. B 24 088503
[17]Simoen E et al 2004 J. Appl. Phys. 95 4084
[18]Simoen E, Magnusson U, Rotondaro A L P and Claeys C 1994 IEEE Trans. Electron Devices 41 330
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 118501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 118501
[3] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 118501
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 118501
[5] Mei Li, Jin-Shun Bi, Yan-Nan Xu, Bo Li, Kai Xi, Hai-Bin Wang, Jing-Liu, Jin-Li, Lan-Long Ji, Li Luo, Ming Liu. Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes[J]. Chin. Phys. Lett., 2018, 35(7): 118501
[6] Yan-Fei Liu, Dong-Dong Yang, Li-Xin Wang, Qi Li. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space[J]. Chin. Phys. Lett., 2018, 35(4): 118501
[7] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 118501
[8] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 118501
[9] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 118501
[10] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 118501
[11] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 118501
[12] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 118501
[13] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 118501
[14] HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui, JIANG Yu-Yu, CHENG Kun, ZHOU Jian-Lin, LIU Jiang-Tao, HUANG Rui, YAO Sheng-Jie. A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance[J]. Chin. Phys. Lett., 2015, 32(09): 118501
[15] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 118501
Viewed
Full text


Abstract