Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 118103    DOI: 10.1088/0256-307X/34/11/118103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Controllable Fabrication of GeSi Nanowires in Diameter of About 10nm Using the Top-Down Approach
Cheng Zeng1,2, Yi Li2, Jin-Song Xia1,2**
1Huazhong Institute of Electro-Optics, Wuhan 430074
2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
Cheng Zeng, Yi Li, Jin-Song Xia 2017 Chin. Phys. Lett. 34 118103
Download: PDF(926KB)   PDF(mobile)(921KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ordered GeSi nanowires with a $\sim$10 nm cross section are fabricated utilizing top-down and Ge condensation techniques. In transmission electron microscopy measurements, the obtained GeSi nanowires exhibit a single-crystal structure and a smooth Ge/SiO$_{2}$ interface. Due to the linear relationship between the cross-section area and the initial pattern size under the self-limited oxidation condition, the cross-section size of GeSi nanowires can be precisely controlled. The Raman spectra reveal a high Ge fraction (up to 97%) and a biaxial strain of the GeSi nanowires. This top-down technique is promising for fabrication of high-performance GeSi nanowire based optoelectronic devices.
Received: 25 July 2017      Published: 25 October 2017
PACS:  81.07.Gf (Nanowires)  
  62.23.Hj (Nanowires)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.30.Er (Solid metals and alloys ?)  
Fund: Supported by the State Key Program of the National Natural Science Foundation of China under Grant No 61335002, the National High Technology Research and Development Program of China under Grant No 2015AA016904, the National Natural Science Foundation of China under Grant No 11574102, and the National Basic Research Program of China under Grant Nos 2013CB933303 and 2013CB632104.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/118103       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/118103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng Zeng
Yi Li
Jin-Song Xia
[1]Yan X C, Zhu J, Zhang L B, Xing Q L, Chen Y J, Zhu H Q, Li J T, Kang L, Chen J and Wu P H 2017 Acta Phys. Sin. 66 198501 (in Chinese)
[2]E Y X, Hao Z B, Yu J D, Wu C, Wang L, Xiong B and Luo Y 2017 Chin. Phys. B 26 016103
[3]Hu Y, Churchill H O, Reilly D J, Xiang J, Lieber C M and Marcus C M 2007 Nat. Nanotechnol. 2 622
[4]Cao L, White J S, Park J S, Schuller J A, Clemens B M and Brongersma M L 2009 Nat. Mater. 8 643
[5]Kim C J, Lee H S, Cho Y J, Kang K and Jo M H 2010 Nano Lett. 10 2043
[6]Xiang J, Lu W, Hu Y, Wu Y, Yan H and Lieber C M 2006 Nature 441 489
[7]Liang G, Xiang J, Kharche N, Klimeck G, Lieber C M and Lundstrom M 2007 Nano Lett. 7 642
[8]Hu Y, Kuemmeth F, Lieber C M and Marcus C M 2011 Nat. Nanotechnol. 7 47
[9]Higginbotham A P, Larsen T W, Yao J, Yan H, Lieber C M, Marcus C M and Kuemmeth F 2014 Nano Lett. 14 3582
[10]Xu M, Xue Z, Yu L, Qian S, Fan Z, Wang J and Cabarrocas P R 2015 Nanoscale 7 5197
[11]Valenta J, Bruhn B and Linnros J 2011 Nano Lett. 11 3003
[12]Tezuka T, Sugiyama N and Takagi S 2003 J. Appl. Phys. 94 7553
[13]Tezuka T, Sugiyama N, Mizuno T, Suzuki M and Takagi S I 2001 Jpn. J. Appl. Phys. 40 2866
[14]Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y and Takagi S I 2003 Appl. Phys. Lett. 83 3516
[15]Irisawa T, Numata T, Hirashita N, Moriyama Y, Nakaharai S, Tezuka T and Takagi S 2008 Thin Solid Films 517 167
[16]Shimura T, Shimizu M, Horiuchi S, Watanabe H, Yasutake K and Umeno M 2006 Appl. Phys. Lett. 89 111923
[17]Balakumar S, Peng S, Hoe K M, Agarwal A, Lo G Q, Kumar R and Tripathy S 2007 Appl. Phys. Lett. 90 032111
[18]Shanavas K V, Garg N and Sharma S M 2006 Phys. Rev. B 73 094120
[19]Sychugov I, Juhasz R, Valenta J and Linnros J 2005 Phys. Rev. Lett. 94 087405
[20]Bedell S W, Fogel K, Sadana D K and Chen H 2004 Appl. Phys. Lett. 85 5869
[21]Nakaharai S, Tezuka T, Hirashita N, Toyoda E, Moriyama Y, Sugiyama N and Takagi S 2009 J. Appl. Phys. 105 024515
[22]Greil J, Lugstein A, Zeiner C, Strasser G and Bertagnolli E 2012 Nano Lett. 12 6230
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 118103
[2] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 118103
[3] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 118103
[4] Peng Ren, Gang Han, Bing-Lei Fu, Bin Xue, Ning Zhang, Zhe Liu, Li-Xia Zhao, Jun-Xi Wang, Jin-Min Li. Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(06): 118103
[5] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 118103
[6] CHENG Ying, ZOU Ji-Jun, WAN Ming, WANG Wei-Lu, PENG Xin-Cun, FENG Lin, DENG Wen-Juan, ZHU Zhi-Fu. Factors Affecting the Top Stripping of GaAs Microwire Array Fabricated by Inductively Coupled Plasma Etching[J]. Chin. Phys. Lett., 2015, 32(5): 118103
[7] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 118103
[8] YANG You-Wen, LI Tian-Ying, ZHU Wen-Bin, MA Dong-Ming, CHEN Dong. Fabrication and Characterization of Single-Crystalline AgSbTe Nanowire Arrays[J]. Chin. Phys. Lett., 2013, 30(10): 118103
[9] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 118103
[10] ZHAO Zhi-Fei, LI Xin-Hua, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi. Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy[J]. Chin. Phys. Lett., 2012, 29(11): 118103
[11] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(7): 118103
[12] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 118103
[13] WEI Ang, WANG Zhao, PAN Liu-Hua, LI Wei-Wei, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2011, 28(8): 118103
[14] LIU Zhan-Hui, XIU Xiang-Qian**, YAN Huai-Yue, ZHANG Rong, XIE Zi-Li, HAN Ping, SHI Yi, ZHENG You-Dou . Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2011, 28(5): 118103
[15] BIAN Fei, WANG Rui, YANG Huai-Xin, ZHANG Xin-Zheng, LI Jian-Qi, XU Hong-Xing, XU Jing-Jun, ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization[J]. Chin. Phys. Lett., 2010, 27(8): 118103
Viewed
Full text


Abstract