CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Controllable Fabrication of GeSi Nanowires in Diameter of About 10nm Using the Top-Down Approach |
Cheng Zeng1,2, Yi Li2, Jin-Song Xia1,2** |
1Huazhong Institute of Electro-Optics, Wuhan 430074 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074
|
|
Cite this article: |
Cheng Zeng, Yi Li, Jin-Song Xia 2017 Chin. Phys. Lett. 34 118103 |
|
|
Abstract Ordered GeSi nanowires with a $\sim$10 nm cross section are fabricated utilizing top-down and Ge condensation techniques. In transmission electron microscopy measurements, the obtained GeSi nanowires exhibit a single-crystal structure and a smooth Ge/SiO$_{2}$ interface. Due to the linear relationship between the cross-section area and the initial pattern size under the self-limited oxidation condition, the cross-section size of GeSi nanowires can be precisely controlled. The Raman spectra reveal a high Ge fraction (up to 97%) and a biaxial strain of the GeSi nanowires. This top-down technique is promising for fabrication of high-performance GeSi nanowire based optoelectronic devices.
|
|
Received: 25 July 2017
Published: 25 October 2017
|
|
PACS: |
81.07.Gf
|
(Nanowires)
|
|
62.23.Hj
|
(Nanowires)
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
78.30.Er
|
(Solid metals and alloys ?)
|
|
|
Fund: Supported by the State Key Program of the National Natural Science Foundation of China under Grant No 61335002, the National High Technology Research and Development Program of China under Grant No 2015AA016904, the National Natural Science Foundation of China under Grant No 11574102, and the National Basic Research Program of China under Grant Nos 2013CB933303 and 2013CB632104. |
|
|
[1] | Yan X C, Zhu J, Zhang L B, Xing Q L, Chen Y J, Zhu H Q, Li J T, Kang L, Chen J and Wu P H 2017 Acta Phys. Sin. 66 198501 (in Chinese) | [2] | E Y X, Hao Z B, Yu J D, Wu C, Wang L, Xiong B and Luo Y 2017 Chin. Phys. B 26 016103 | [3] | Hu Y, Churchill H O, Reilly D J, Xiang J, Lieber C M and Marcus C M 2007 Nat. Nanotechnol. 2 622 | [4] | Cao L, White J S, Park J S, Schuller J A, Clemens B M and Brongersma M L 2009 Nat. Mater. 8 643 | [5] | Kim C J, Lee H S, Cho Y J, Kang K and Jo M H 2010 Nano Lett. 10 2043 | [6] | Xiang J, Lu W, Hu Y, Wu Y, Yan H and Lieber C M 2006 Nature 441 489 | [7] | Liang G, Xiang J, Kharche N, Klimeck G, Lieber C M and Lundstrom M 2007 Nano Lett. 7 642 | [8] | Hu Y, Kuemmeth F, Lieber C M and Marcus C M 2011 Nat. Nanotechnol. 7 47 | [9] | Higginbotham A P, Larsen T W, Yao J, Yan H, Lieber C M, Marcus C M and Kuemmeth F 2014 Nano Lett. 14 3582 | [10] | Xu M, Xue Z, Yu L, Qian S, Fan Z, Wang J and Cabarrocas P R 2015 Nanoscale 7 5197 | [11] | Valenta J, Bruhn B and Linnros J 2011 Nano Lett. 11 3003 | [12] | Tezuka T, Sugiyama N and Takagi S 2003 J. Appl. Phys. 94 7553 | [13] | Tezuka T, Sugiyama N, Mizuno T, Suzuki M and Takagi S I 2001 Jpn. J. Appl. Phys. 40 2866 | [14] | Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y and Takagi S I 2003 Appl. Phys. Lett. 83 3516 | [15] | Irisawa T, Numata T, Hirashita N, Moriyama Y, Nakaharai S, Tezuka T and Takagi S 2008 Thin Solid Films 517 167 | [16] | Shimura T, Shimizu M, Horiuchi S, Watanabe H, Yasutake K and Umeno M 2006 Appl. Phys. Lett. 89 111923 | [17] | Balakumar S, Peng S, Hoe K M, Agarwal A, Lo G Q, Kumar R and Tripathy S 2007 Appl. Phys. Lett. 90 032111 | [18] | Shanavas K V, Garg N and Sharma S M 2006 Phys. Rev. B 73 094120 | [19] | Sychugov I, Juhasz R, Valenta J and Linnros J 2005 Phys. Rev. Lett. 94 087405 | [20] | Bedell S W, Fogel K, Sadana D K and Chen H 2004 Appl. Phys. Lett. 85 5869 | [21] | Nakaharai S, Tezuka T, Hirashita N, Toyoda E, Moriyama Y, Sugiyama N and Takagi S 2009 J. Appl. Phys. 105 024515 | [22] | Greil J, Lugstein A, Zeiner C, Strasser G and Bertagnolli E 2012 Nano Lett. 12 6230 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|