Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 118101    DOI: 10.1088/0256-307X/34/11/118101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fabrication of High-Haze Flexible Transparent Conductive PMMA Films Embedded with Silver Nanowires
Lu Zhong1,2, Wei Xu2**, Mei-Yi Yao1, Wen-Feng Shen2, Feng Xu2, Wei-Jie Song2,3**
1School of Material Science and Engineering, Shanghai University, Shanghai 200444
2Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
3Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164
Cite this article:   
Lu Zhong, Wei Xu, Mei-Yi Yao et al  2017 Chin. Phys. Lett. 34 118101
Download: PDF(724KB)   PDF(mobile)(719KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-haze flexible transparent conductive polymethyl methacrylate (PMMA) films embedded with silver nanowires (AgNWs) are fabricated by a low-cost and simple process. The volatilization rate of the solvent in PMMA solution affects the surface microstructures and morphologies, which results in different haze factors of the composite films. The areal mass density of AgNW shows a significant influence on the optical and electrical properties of composite films. The AgNW/PMMA transparent conductive films with the sheet resistance of 5.5 $\Omega$sq$^{-1}$ exhibit an excellent performance with a high haze factor of 81.0% at 550 nm.
Received: 16 May 2017      Published: 25 October 2017
PACS:  81.07.Gf (Nanowires)  
  78.66.-w (Optical properties of specific thin films)  
  78.67.Uh (Nanowires)  
Fund: Supported by the International S&T Cooperation Program of China under Grant No 2015DFH60240, the Ningbo Municipal Science and Technology Innovative Research Team under Grant No 2016B10005, the Zhejiang Provincial Natural Science Foundation of China under Grant No LY15B050003, and the Ningbo Natural Science Foundation under Grant No 2016A610281.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/118101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/118101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu Zhong
Wei Xu
Mei-Yi Yao
Wen-Feng Shen
Feng Xu
Wei-Jie Song
[1]Lee H, Lee K, Park J T, Kim W C and Lee H 2014 Adv. Funct. Mater. 24 3276
[2]Wang H H 2012 Physics 41 783 (in Chinese)
[3]Cui F, Yu Y, Dou L T, Sun J W, Yang Q, Schildknecht C, Schierle-Arndt K and Yang P D 2015 Nano Lett. 15 7610
[4]Lee S J, Kim Y H, Kim J K, Baik H, Park J H, Lee J, Nam J, Park J H, Lee T W, Yi G R and Cho J H 2014 Nanoscale 6 11828
[5]Liu Z, Xu J, Chen D and Shen G Z 2015 Chem. Soc. Rev. 44 161
[6]Liu J M, Chen X L, Fang J, Zhao Y and Zhang X D 2015 Sol. Energ. Mater. Sollar Cells 138 41
[7]Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F and Tang J X 2015 Adv. Mater. 27 1035
[8]Wang K X, Yu Z F, Liu V, Cui Y and Fan S H 2012 Nano Lett. 12 1616
[9]Krc J, Lipovsek B, Bokalic M, Campa A, Oyama T, Kambe M, Matsui T, Sai H, Kondo M and Topic M 2010 Thin Solid Films 518 3054
[10]Wooh S, Yoon H, Jung J H, Lee Y G, Koh J H, Lee B, Kang Y S and Char K 2013 Adv. Mater. 25 3111
[11]Chen X L, Li L N, Wang F, Ni J, Geng X H, Zhang X D and Zhao Y 2012 Thin Solid Films 520 5392
[12]Kim D S, Park J H, Shin B K, Moon K J, Son M, Ham M H, Lee W and Myoung J M 2012 Appl. Surf. Sci. 259 596
[13]Kou P F, Yang L, Chang C and He S L 2017 Sci. Rep. 7 42052
[14]Shen Y and Yao R H 2016 Chin. Phys. Lett. 33 037801
[15]Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
[16]Fang Z Y, Lu Y W, Fan L R and Zhu X 2010 Plasmonics 5 207
[17]Woo J S, Sin D H, Kim H, Jang J I, Kim H Y, Lee G W, Cho K, Park S Y and Han J T 2016 Nanoscale 8 6693
[18]Yao S S, Myers A, Malhotra A, Lin F, Bozkurt A, Muth J F and Zhu Y 2017 Adv. Health. Mater. 6 1601159
[19]Huang Q J, Shen W F, Fang X Z, Chen G F, Yang Y, Huang J H, Tan R Q and Song W J 2015 ACS Appl. Mater. Interfaces 7 4299
[20]Lagrange M, Langley D P, Giusti G, Jiménez C, Bréchet Y and Bellet D 2015 Nanoscale 7 17410
[21]Kang S, Kim T, Cho S, Lee Y, Choe A, Walker B, Ko S J, Kim J Y and Ko H 2015 Nano Lett. 15 7933
[22]Han J, Yuan S, Liu L, Qiu X F, Gong H B, Yang X P, Li C C, Hao Y F and Cao B Q 2015 J. Mater. Chem. A 3 5375
[23]Preston C, Xu Y L, Han X G, Munday J N and Hu L B 2013 Nano Res. 6 461
[24]Van Deelen J, Klerk L A, Barink M, Rendering H, Voorthuijzen P and Hovestad A 2014 Thin Solid Films 555 159
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 118101
[2] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 118101
[3] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 118101
[4] Peng Ren, Gang Han, Bing-Lei Fu, Bin Xue, Ning Zhang, Zhe Liu, Li-Xia Zhao, Jun-Xi Wang, Jin-Min Li. Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(06): 118101
[5] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 118101
[6] CHENG Ying, ZOU Ji-Jun, WAN Ming, WANG Wei-Lu, PENG Xin-Cun, FENG Lin, DENG Wen-Juan, ZHU Zhi-Fu. Factors Affecting the Top Stripping of GaAs Microwire Array Fabricated by Inductively Coupled Plasma Etching[J]. Chin. Phys. Lett., 2015, 32(5): 118101
[7] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 118101
[8] YANG You-Wen, LI Tian-Ying, ZHU Wen-Bin, MA Dong-Ming, CHEN Dong. Fabrication and Characterization of Single-Crystalline AgSbTe Nanowire Arrays[J]. Chin. Phys. Lett., 2013, 30(10): 118101
[9] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 118101
[10] ZHAO Zhi-Fei, LI Xin-Hua, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi. Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy[J]. Chin. Phys. Lett., 2012, 29(11): 118101
[11] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(7): 118101
[12] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 118101
[13] WEI Ang, WANG Zhao, PAN Liu-Hua, LI Wei-Wei, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2011, 28(8): 118101
[14] LIU Zhan-Hui, XIU Xiang-Qian**, YAN Huai-Yue, ZHANG Rong, XIE Zi-Li, HAN Ping, SHI Yi, ZHENG You-Dou . Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2011, 28(5): 118101
[15] BIAN Fei, WANG Rui, YANG Huai-Xin, ZHANG Xin-Zheng, LI Jian-Qi, XU Hong-Xing, XU Jing-Jun, ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization[J]. Chin. Phys. Lett., 2010, 27(8): 118101
Viewed
Full text


Abstract