CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Design of Broadband Metamaterial Absorbers for Permittivity Sensitivity and Solar Cell Application |
Hai-Long Huang, Hui Xia**, Zhi-Bo Guo, Ding Xie, Hong-Jian Li |
School of Physics and Electronics, Central South University, Changsha 410083
|
|
Cite this article: |
Hai-Long Huang, Hui Xia, Zhi-Bo Guo et al 2017 Chin. Phys. Lett. 34 117801 |
|
|
Abstract A broadband and ultra-thin absorber for solar cell application is designed. The absorber consists of three layers, and the difference is that the four split ring resonators made of metal gold are encrusted in the gallium arsenide (GaAs) plane in the top layer. The simulated results show that a perfect absorption in the region from 481.2 to 684.0 THz can be obtained for either transverse electric or magnetic polarization wave due to the coupling effect between the material of GaAs and gold. The metamaterial is ultra-thin, having the total thickness of 56 nm, which is less than one-tenth resonance wavelength, and the absorption coefficients at the three resonance wavelengths are above 90%. Moreover, the effective medium theory, electric field and surface current distributions are adopted to explain the physical mechanism of the absorption, and the permittivity sensing applications are also discussed. As a result, the proposed structure can be used in many areas, such as solar cell, sensors, and integrated photodetectors.
|
|
Received: 05 May 2017
Published: 25 October 2017
|
|
PACS: |
78.66.-w
|
(Optical properties of specific thin films)
|
|
78.66.Bz
|
(Metals and metallic alloys)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61275174, and the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20100162110068. |
|
|
[1] | Shelby R A, Smith D R and Schultz S 2001 Science 292 77 | [2] | Veselago V G and Lebedev P N 1968 Sov. Phys. Usp. 10 509 | [3] | Smith D R, Padilla W J, Vier D C et al 2000 Phys. Rev. Lett. 84 4184 | [4] | Zhang H, Cao X Y, Gao J et al 2014 PIER Lett. 44 35 | [5] | Iwaszczuk K, Strikwerda A C, Fan K et al 2012 Opt. Express 20 635 | [6] | Wang H, Siva P V, Mitchell A et al 2015 Sol. Energy Mater. Sol. Cells 137 235 | [7] | He Z H, Peng Y Y, Li B X et al 2016 Appl. Phys. Express 9 072002 | [8] | He Z H, Li H J, Li B X et al 2016 Opt. Lett. 41 5206 | [9] | Li B X, Li H J, Zeng L L et al 2016 J. Lightwave Technol. 34 3342 | [10] | Zhan S P, Li H J, He Z H et al 2015 Opt. Express 23 20313 | [11] | Chen Z Q, Li H J, Li B X et al 2016 Appl. Phys. Express 9 102002 | [12] | Landy N I, Sajuyigbe S, Mock J J et al 2008 Phys. Rev. Lett. 100 107402 | [13] | Bhattacharyya S, Ghosh S, Chaurasiya D et al 2015 Appl. Phys. A 118 207 | [14] | Gao R, Zong C X, Ding C et al 2015 Opt. Commun. 356 400 | [15] | Feng R, Qiu J, Cao Y et al 2014 Appl. Phys. Lett. 105 181102 | [16] | Wu J, Zhou C, Yu J et al 2014 IEEE Photon. Technol. Lett. 26 949 | [17] | Shen Y, Pei Z B, Pang Y Q et al 2015 J. Appl. Phys. 117 224503 | [18] | Cheng Y Z, Wang Y, Nie Y et al 2012 J. Appl. Phys. 111 044902 | [19] | Zhang H B, Deng L W, Zhou P H et al 2013 J. Appl. Phys. 113 013903 | [20] | Han N R, Chen Z C, Lim C S et al 2011 Opt. Express 19 6990 | [21] | Bai Y, Zhao L, Ju D Q et al 2015 Opt. Express 23 8670 | [22] | Boriskina S V, Ghasemi H and Chen G 2013 Mater. Today 16 375 | [23] | Patrick R and Cumali S 2016 J. Alloys Compd. 671 43 | [24] | Huang H L, Xia H, Guo Z B et al 2017 Chin. Phys. B 26 025207 | [25] | Smith D R, Vier D C, Koschny T H et al 2005 Phys. Rev. E 71 036617 | [26] | Chen J F, Huang X T, Zerihun G et al 2015 J. Electron. Mater. 44 4269 | [27] | Lyoyd H J 2012 Appl. Phys. Lett. 100 122103 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|