CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Circular Photogalvanic Effect in the Weyl Semimetal TaAs |
Kai Sun1,3†, Shuai-Shuai Sun1†, Lin-Lin Wei1,3, Cong Guo1, Huan-Fang Tian1, Gen-Fu Chen1,2, Huai-Xin Yang1,3**, Jian-Qi Li1,2,3** |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Collaborative Innovation Center of Quantum Matter, Beijing 100084 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Kai Sun, Shuai-Shuai Sun, Lin-Lin Wei et al 2017 Chin. Phys. Lett. 34 117203 |
|
|
Abstract Weyl semimetal (WSM) is expected to be an ideal spintronic material owing to its spin currents carried by the bulk and surface states with spin-momentum locking. The generation of a sizable photocurrent is predicted in non-centrosymmetric WSM arising from the broken inversion symmetry and the linear energy dispersion that is unique to Weyl systems. In our recent measurements, the circular photogalvanic effect (CPGE) is discovered in the TaAs WSM. The CPGE voltage is proportional to the helicity of the incident light, reversing direction if the radiation helicity changes handedness, a periodical oscillation therefore appears following the alteration of light polarization. We herein attribute the CPGE to the asymmetric optical excitation of the Weyl cone, which could result in an asymmetric distribution of photoexcited carriers in momentum space according to an optical spin-related selection rule.
|
|
Received: 11 September 2017
Published: 25 October 2017
|
|
PACS: |
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
72.25.Fe
|
(Optical creation of spin polarized carriers)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant Nos 2015CB921300, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300, 2017YFA0504703 and 2017YFA0302900, the National Natural Science Foundation of China under Grant Nos 11604372, 11474323 and 11774391, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB07020000, and the Scientific Instrument Developing Project of the Chinese Academy of Sciences under Grant No ZDKYYQ20170002. |
|
|
[1] | Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 | [2] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373 | [3] | Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724 | [4] | Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 | [5] | Sun Y, Zhang Y, Felser C and Yan B H 2016 Phys. Rev. Lett. 117 146403 | [6] | Sun Y, Wu S C and Yan B H 2015 Phys. Rev. B 92 115428 | [7] | Chan C K, Lindner N H, Refael G and Lee P A 2017 Phys. Rev. B 95 041104 | [8] | Ganichev S D and Prettl W 2003 J. Phys.: Condens. Matter 15 R935–R983 | [9] | Okada K N, Ogawa N, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M and Tokura Y 2016 Phys. Rev. B 93 081403 | [10] | Hosur P 2011 Phys. Rev. B 83 035309 | [11] | Yuan H T, Wang X Q, Lian B, Zhang H J, Fang X F, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y and Cui Y 2014 Nat. Nanotechnol. 9 851 | [12] | Zhu L P, Liu Y, Jiang C Y, Qin X D, Li Y, Gao H S and Chen Y H 2014 J. Appl. Phys. 115 083509 | [13] | Yu J L, Chen Y H, Liu Y, Jiang C Y, Ma H and Zhu L P 2012 Appl. Phys. Lett. 100 152110 | [14] | Ganichev S D, Ketterl H, Prettl W, Ivchenko E L and Vorobjev L E 2000 Appl. Phys. Lett. 77 3146 | [15] | Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023 | [16] | Ganichev S D and Prettl W 2006 Intense Terahertz Excitation of Semiconductors (Oxford: Oxford University Press) | [17] | Fridkin V M 2001 Crystallogr. Rep. 46 654 | [18] | Sturman B I and Fridkin V M 1992 Photovoltaic and Photorefractive Effects in NonCentrosymmetric Materials (New York: Gordon and Breach) | [19] | Yu J L, Chen Y H, Cheng S Y and Lai Y F 2013 Physica E 49 92 | [20] | Kamshilin A A, Grachev A I, Golik S S, Romashko R V and Kulchin Y N 2012 Appl. Phys. B 106 899 | [21] | Ivchenko E L and Pikus G E 1997 Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Berlin: Springer) | [22] | Yin C M, Tang N, Zhang S, Duan J X, Xu F J, Song J, Mei F H, Wang X Q, Shen B, Chen Y H, Yu J L and Ma H 2011 Appl. Phys. Lett. 98 122104 | [23] | Diehl H, Shalygin V A, Bel'kov V V, Hoffmann Ch, Danilov S N, Herrle T, Tarasenko S A, Schuh D, Gerl Ch, Wegscheider W, Prettl W and Ganichev S D 2007 New J. Phys. 9 349 | [24] | McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2011 Nat. Nanotechnol. 7 96 | [25] | Nolas G S, Sharp J and Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer Verlag) | [26] | Duan J X, Tang N, He X, Yan Y, Zhang S, Qin X D, Wang X Q, Yang X L, Xu F J, Chen Y H, Ge W K and Shen B 2015 Sci. Rep. 4 4889 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|