Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 117202    DOI: 10.1088/0256-307X/34/11/117202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Predicted High Thermoelectric Performance of Quasi-Two-Dimensional Compound GeAs Using First-Principles Calculations
Dai-Feng Zou1,2**, Chuan-Bin Yu2,3, Yu-Hao Li2,3, Yun Ou1,2
1School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201
2Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055
3State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016
Cite this article:   
Dai-Feng Zou, Chuan-Bin Yu, Yu-Hao Li et al  2017 Chin. Phys. Lett. 34 117202
Download: PDF(735KB)   PDF(mobile)(729KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic structure of binary quasi-two-dimensional GeAs is investigated using first-principles calculations, and it is found that the anisotropic structure of the layered compound GeAs brings about the anisotropy of the transport properties. Meanwhile, the band structure of GeAs exhibits a relatively large dispersion near the valence-band maximum in the $Z$–$V$ direction while it is rather flat in the $Z$–${\it \Gamma}$ direction, which is highly desirable for good thermoelectric performance. The calculated partial charge density distribution also reveals that GeAs possesses anisotropic electrical conductivity. Based on the semi-classical Boltzmann transport theory, the anisotropic transport properties are observed, and the optimal doping concentrations are estimated. The temperature dependence transport properties of p-type GeAs are compared with the experimental data in good agreement, and the theoretical figure-of-merit $ZT$ has been predicted as well.
Received: 21 August 2017      Published: 25 October 2017
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Ga (Transition-metal compounds)  
  31.15.A- (Ab initio calculations)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0201001, the National Natural Science Foundation of China under Grant No 11627801, and the Education Bureau of Hunan Province of China under Grant No 16C0626.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/117202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/117202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dai-Feng Zou
Chuan-Bin Yu
Yu-Hao Li
Yun Ou
[1]Bell L E 2008 Science 321 1457
[2]Gaultois M W et al 2013 Chem. Mater. 25 2911
[3]Zhao L D et al 2014 Nature 508 373
[4]Li J et al 2012 Energy Environ. Sci. 5 8543
[5]Gorai P et al 2016 J. Mater. Chem. A 4 11110
[6]Lee K et al 2016 Chem. Mater. 28 2776
[7]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[8]Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[9]Blöchl P E 1994 Phys. Rev. B 50 17953
[10]Scheidemantel T J et al 2003 Phys. Rev. B 68 125210
[11]Ong K P et al 2011 Phys. Rev. B 83 115110
[12]Zou D et al 2013 J. Mater. Chem. A 1 8888
[13]Ali R et al 2014 Chin. Phys. Lett. 31 047102
[14]Zou D et al 2016 J. Alloys Compd. 686 571
[15]Guo H H et al 2014 Chin. Phys. B 23 017201
[16]Kaur K and Kumar R 2016 Chin. Phys. B 25 056401
[17]Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[18]Aulbur W G et al 2012 Solid State Phys. 54 1
[19]Xi L et al 2012 Phys. Rev. B 86 155201
[20]Bilc D I et al 2015 Phys. Rev. Lett. 114 136601
[21]Lee M S et al 2011 Phys. Rev. B 83 085204
[22]Singh D J and Mazin I 1997 Phys. Rev. B 56 R1650
[23]Joshi R K et al 2005 Physica E 25 374
[24]Watson G W 2001 J. Chem. Phys. 114 758
[25]Ivanova L et al 1999 Inorg. Mater. 35 34
[26]Gudelli V K et al 2016 J. Phys.: Condens. Matter 28 025502
[27]Wang F Q et al 2015 Nanoscale 7 15962
[28]He J G et al 2016 Phys. Rev. Lett. 117 046602
[29]Gandi A N et al 2016 Chem. Mater. 28 1647
[30]Kumar S and Schwingenschlögl U 2016 Phys. Rev. B 94 035405
Related articles from Frontiers Journals
[1] Min Zhang, Chaoliang Hu, Qi Zhang, Feng Liu, Shen Han, Chenguang Fu, and Tiejun Zhu. Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping[J]. Chin. Phys. Lett., 2021, 38(12): 117202
[2] Zhongmou Yue, Kunpeng Zhao, Hongyi Chen, Pengfei Qiu, Lidong Chen, and Xun Shi. Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions[J]. Chin. Phys. Lett., 2021, 38(11): 117202
[3] Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo, and Jun-You Yang. Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials[J]. Chin. Phys. Lett., 2021, 38(9): 117202
[4] Wenke He , Bingchao Qin , and Li-Dong Zhao. Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor[J]. Chin. Phys. Lett., 2020, 37(8): 117202
[5] Bo Feng, Guang-Qiang Li, Xiao-Ming Hu, Pei-Hai Liu, Ru-Song Li, Yang-Lin Zhang, Ya-Wei Li, Zhu He, Xi-An Fan. Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation[J]. Chin. Phys. Lett., 2020, 37(3): 117202
[6] Kai Zhou, Ting Zhang, Bin Liu, Yi-Jun Yao. Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations[J]. Chin. Phys. Lett., 2020, 37(1): 117202
[7] Dong-Dong Yang, Hao Tong, Ling-Jun Zhou, Xiang-Shui Miao. Effects of Thickness and Temperature on Thermoelectric Properties of Bi$_{2}$Te$_{3}$-Based Thin Films[J]. Chin. Phys. Lett., 2017, 34(12): 117202
[8] Peng-Xian Lu, Rui-Xia Zhao. Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation[J]. Chin. Phys. Lett., 2017, 34(3): 117202
[9] WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui. Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids[J]. Chin. Phys. Lett., 2015, 32(11): 117202
[10] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 117202
[11] ZHANG Xin, LIU Jian, LI Yi, SU Wen-Bin, LI Ji-Chao, ZHU Yuan-Hu, LI Mao-Kui, WANG Chun-Ming, WANG Chun-Lei. Enhancement of Thermoelectric Performance of Sr0.9Ba0.1Ti0.8Nb0.2O3 Ceramics by A-Site Cation Nonstoichiometry[J]. Chin. Phys. Lett., 2015, 32(03): 117202
[12] XUN Meng, XU Chen, XIE Yi-Yang, DENG Jun, XU Kun, CHEN Hong-Da. Thermal Analysis of Implant-Defined Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2015, 32(01): 117202
[13] XU Kun-Qi, ZENG Hua-Rong, YU Hui-Zhu, ZHAO Kun-Yu, LI Guo-Rong, SONG Jun-Qiang, SHI Xun, CHEN Li-Dong. An Alternating-Current Voltage Modulated Thermal Probe Technique for Local Seebeck Coefficient Characterization[J]. Chin. Phys. Lett., 2014, 31(12): 117202
[14] YAN Guo-Ying, ZHANG Hui-Ling, BAI Zi-Long, WANG Shu-Fang, WANG Jiang-Long, YU Wei, FU Guang-Sheng. The Enhancement of Laser-Induced Transverse Voltage in Tilted Bi2Sr2Co2Oy Thin Films with a Graphite Light Absorption Layer[J]. Chin. Phys. Lett., 2013, 30(4): 117202
[15] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 117202
Viewed
Full text


Abstract