Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 117101    DOI: 10.1088/0256-307X/34/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes
Meng Ye, Cai-Juan Xia**, Ai-Yun Yang, Bo-Qun Zhang, Yao-Heng Su, Zhe-Yan Tu, Yue Ma
School of Science, Xi'an Polytechnic University, Xi'an 710048
Cite this article:   
Meng Ye, Cai-Juan Xia, Ai-Yun Yang et al  2017 Chin. Phys. Lett. 34 117101
Download: PDF(736KB)   PDF(mobile)(725KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices.
Received: 13 July 2017      Published: 25 October 2017
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11504283 and 21503153, the Natural Science Foundation of Shaanxi Province under Grant No 2014JM1025, and the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/117101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/117101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Ye
Cai-Juan Xia
Ai-Yun Yang
Bo-Qun Zhang
Yao-Heng Su
Zhe-Yan Tu
Yue Ma
[1]Chen J, Reed M A, Rawlett A M et al 1999 Science 286 1550
[2]Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
[3]Zhang Z H, Guo C, Kwong D J et al 2013 Adv. Funct. Mater. 23 2765
[4]Saffarzadeh A and Farghadan A 2011 Appl. Phys. Lett. 98 023106
[5]Deng X Q, Zhang Z H, Tang G P et al 2014 Carbon 66 646
[6]Wu Q H, Zhao P and Liu D S 2016 Chin. Phys. Lett. 33 037303
[7]Liljeroth P, Repp J and Meyer G 2007 Science 317 1203
[8]Fan Z Q, Zhang Z H, Deng X Q et al 2012 Org. Electron. 13 2954
[9]Xia C J, Zhang B Q, Yang M et al 2016 Chin. Phys. Lett. 33 047101
[10]Liu C L, Kurosawa T, Yu A D et al 2011 J. Phys. Chem. C 115 5930
[11]Zhang Z H, Yang Z, Yuan J H et al 2008 J. Chem. Phys. 129 094702
[12]Yin X, Liu H and Zhao J 2006 J. Chem. Phys. 125 094711
[13]Pan J B, Zhang Z H, Deng X Q et al 2010 Appl. Phys. Lett. 97 203104
[14]Bala S, Aithal R K, Derosa P et al 2010 J. Phys. Chem. C 114 20877
[15]Qiu M and Liew K M 2013 J. Appl. Phys. 113 054305
[16]Zhang G P, Hu G C, Li Z L et al 2011 Chin. Phys. B 20 127304
[17]Song Y, Bao D L, Xie Z et al 2013 Phys. Lett. A 377 3228
[18]Areshkin D A, Gunlycke D and White C T 2007 Nano Lett. 7 204
[19]Castro Neto A H, Guinea F, Peres N M R et al 2009 Rev. Mod. Phys. 81 109
[20]Fujita M, Wakabayashi K, Nakada K et al 1996 J. Phys. Soc. Jpn. 65 1920
[21]Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[22]Zeng J, Chen K Q, He J et al 2011 J. Phys. Chem. C 115 25072
[23]Li J C and Gong X 2013 Org. Electron. 14 2451
[24]Song Y, Xie Z, Ma Y et al 2014 J. Phys. Chem. C 118 18713
[25]Ren H, Li Q X, Luo Y et al 2009 Appl. Phys. Lett. 94 173110
[26]Zhao P, Liu D S, Li S J et al 2013 Phys. Lett. A 377 1134
[27]Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102
[28]Jin C, Lan H, Peng L et al 2009 Phys. Rev. Lett. 102 205501
[29]Chuvilin A, Meyer J C, Algara-Siller G et al 2009 New J. Phys. 11 083019
[30]Song Y, Xie Z, Zhang G P et al 2013 J. Phys. Chem. C 117 20951
[31]Shen L, Zeng M, Yang S W et al 2010 J. Am. Chem. Soc. 132 11481
[32]Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[33]Brandbyge M, Mozos J L, Ordejon P et al 2002 Phys. Rev. B 65 165401R1
[34]Ceperley D M and Aler B J 1980 Phys. Rev. Lett. 45 566
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 117101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 117101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 117101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 117101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 117101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 117101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 117101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 117101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 117101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 117101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 117101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 117101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 117101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 117101
Viewed
Full text


Abstract