Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 116801    DOI: 10.1088/0256-307X/34/11/116801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Adsorption of 1,3,5-Triphenylbenzene Molecules and Growth of Graphene Nanoflakes on Cu(100) Surface
Qiao-Yun Liu1, Jun-Jie Song2**, Yi-Liang Cai3, Dan Qiao1, Li-Wei Jing1, Pi-Mo He1, Han-Jie Zhang1**
1Department of Physics, Zhejiang University, Hangzhou 310027
2School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100
3Department of Fundamental and Social Science, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018
Cite this article:   
Qiao-Yun Liu, Jun-Jie Song, Yi-Liang Cai et al  2017 Chin. Phys. Lett. 34 116801
Download: PDF(980KB)   PDF(mobile)(962KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Adsorption of 1,3,5-triphenylbenzene (TPB) molecules on Cu(100) surface is studied using ultraviolet photoelectron spectroscopy (UPS) and density functional theory (DFT) calculations. Researches on the bottom-up fabrication of graphene nanoflakes (GNFs) with TPB as a precursor on the Cu(100) surface are carried out based on UPS and DFT calculations. Three emission features $d$, $e$ and $f$ originating from the TPB molecules are located at 3.095, 7.326 and 9.349 eV below the Fermi level, respectively. With the increase of TPB coverage on the Cu(100) substrate, the work function decreases due to the formation of interfacial dipoles and charge (electron) rearrangement at the TPB/Cu(100) interface. Upon the formation of GNFs, five emission characteristic peaks of $g$, $h$, $i$, $j$ and $k$ originating from the GNFs are located at 1.100, 3.529, 6.984, 8.465 and 9.606 eV below the Fermi level, respectively. Angle resolved ultraviolet photoelectron spectroscopy (ARUPS) and DFT calculations indicate that TPB molecules adopt a lying-down configuration with their molecular plane nearly parallel to the Cu(100) substrate at the monolayer stage. At the same time, the lying-down configuration for the GNFs on the Cu(100) surface is also unveiled by ARUPS and DFT calculations.
Received: 31 July 2017      Published: 25 October 2017
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  79.60.-i (Photoemission and photoelectron spectra)  
  73.20.-r (Electron states at surfaces and interfaces)  
  68.55.-a (Thin film structure and morphology)  
Fund: Supported by the National Basic Research Program of China under Grant No 2011CB921903, and the Scientific Research Fund of Zhejiang Provincial Education Department under Grant Nos Y201121234 and LQ12F04001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/116801       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/116801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiao-Yun Liu
Jun-Jie Song
Yi-Liang Cai
Dan Qiao
Li-Wei Jing
Pi-Mo He
Han-Jie Zhang
[1]Novoselov K S et al 2004 Science 306 666
[2]Novoselov K S et al 2005 Nature 438 197
[3]Katsnelson M I 2007 Mater. Today 10 20
[4]Balandin A A et al 2008 Nano Lett. 8 902
[5]Wan X, Chen K and Xu J 2014 Small 10 4443
[6]Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[7]Ye S et al 2016 J. Mater. Sci. Mater. Electron. 27 9624
[8]Liu R et al 2011 J. Am. Chem. Soc. 133 15221
[9]Tada K and Watanabe K 2002 Phys. Rev. Lett. 88 127601
[10]Morozov S V et al 2008 Phys. Rev. Lett. 100 16602
[11]Wintterlin J and Bocquet M L 2009 Surf. Sci. 603 1841
[12]Stoller M D et al 2008 Nano Lett. 8 3498
[13]Liu X et al 2015 Prog. Surf. Sci. 90 397
[14]Calleja F et al 2014 Nat. Phys. 11 43
[15]Abanin D A, Lee P A and Levitov L S 2006 Phys. Rev. Lett. 96 176803
[16]Yan X et al 2010 Nano Lett. 10 1869
[17]Yang W et al 2010 Angew. Chem. Int. Ed. 49 2114
[18]Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
[19]Kulkarni G S et al 2014 Nat. Commun. 5 4376
[20]Westervelt R M 2008 Science 320 324
[21]Lee H et al 2005 Phys. Rev. B 72 174431
[22]Okada S and Oshiyama A 2001 Phys. Rev. Lett. 87 146803
[23]Hernandez Y et al 2008 Nat. Nanotechnol. 3 563
[24]Gao W et al 2009 Nat. Chem. 1 403
[25]Dreyer D R, Ruoff R S and Bielawski C W 2010 Angew. Chem. Int. Ed. 49 9336
[26]Riedl C, Coletti C and Starke U 2010 J. Phys. D 43 374009
[27]Sun Z et al 2010 Nature 468 549
[28]Ueta H et al 2004 Surf. Sci. 560 183
[29]Dong Y et al 2012 Carbon 50 4738
[30]Tian Y et al 2004 J. Am. Chem. Soc. 126 1180
[31]Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[32]van Wesep R G et al 2011 J. Chem. Phys. 134 171105
[33]Ishihara M et al 2011 Mater. Lett. 65 2864
[34]Niu T et al 2013 J. Am. Chem. Soc. 135 8409
[35]Chen X et al 2012 Appl. Phys. Lett. 100 163106
[36]Sławińska J, Dabrowski P and Zasada I 2011 Phys. Rev. B 83 245429
[37]Hernández-Rodríguez I et al 2015 Diamond Relat. Mater. 57 58
[38]Liu B et al 2011 Analyst 136 2218
[39]Gao M et al 2011 Appl. Phys. Lett. 98 033101
[40]Sutter P, Sadowski J T and Sutter E 2009 Phys. Rev. B 80 245411
[41]Vinogradov N A et al 2011 J. Phys. Chem. C 115 9568
[42]Rasool H I et al 2011 J. Am. Chem. Soc. 133 12536
[43]Cho J et al 2011 ACS Nano 5 3607
[44]Song J et al 2016 Nanotechnology 27 55602
[45]Song J et al 2016 Appl. Surf. Sci. 367 424
[46]Cai Y L et al 2014 Chem. Phys. Lett. 609 142
[47]Hu F et al 2014 J. Chem. Phys. 140 94704
[48]Tao Y et al 2015 Surf. Sci. 641 135
[49]Mao H Y et al 2005 Acta Phys. Sin. 54 460 (in Chinese)
[50]Wu Y et al 2004 Acta Phys. Sin. 53 1604 (in Chinese)
[51]Wang X F et al 2010 Europhys. Lett. 89 66004
[52]Baldacchini C et al 2003 Phys. Rev. B 68 195109
[53]Katayama T et al 2010 J. Phys. Chem. Lett. 1 2917
[54]Tibbetts G G et al 1977 Phys. Rev. B 15 3652
[55]Siokou A et al 2011 Appl. Surf. Sci. 257 9785
[56]Wu Q, Hong G and Lee S T 2013 Org. Electron. 14 542
[57]Qu B et al 2015 Surf. & Interface Anal. 47 793
[58]Zhang Y H et al 2016 Acta Phys. Sin. 65 157901 (in Chinese)
[59]Han H et al 2004 Physica B 352 36
Related articles from Frontiers Journals
[1] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 116801
[2] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 116801
[3] Ye Tian, Xiaodong Yuan , Dongxia Hu , Wanguo Zheng , and Wei Han . Molecular Dynamics Simulations of the Interface between Porous and Fused Silica[J]. Chin. Phys. Lett., 2020, 37(10): 116801
[4] Quanyin Tang, Ji-Hui Yang, Zhi-Pan Liu, and Xin-Gao Gong. Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure[J]. Chin. Phys. Lett., 2020, 37(9): 116801
[5] Qing Han, Qun Cai. Suppressing Effects of Ag Wetting Layer on Surface Conduction of Er Silicide/Si(001) Nanocontacts[J]. Chin. Phys. Lett., 2018, 35(8): 116801
[6] HUANG Zheng-Xing, WANG Li-Ying, BAI Su-Yuan, TANG Zhen-An. Thermal Conductance of Cu and Carbon Nanotube Interface Enhanced by a Graphene Layer[J]. Chin. Phys. Lett., 2015, 32(08): 116801
[7] LI Jing, YANG Shen-Yuan, LI Shu-Shen. N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation[J]. Chin. Phys. Lett., 2015, 32(07): 116801
[8] LI Jing, YANG Shen-Yuan, LI Shu-Shen. Structural and Electronic Properties of Zigzag Graphene Nanoribbons on Si(001) Substrates[J]. Chin. Phys. Lett., 2015, 32(02): 116801
[9] ZHANG Li-Sheng, FANG Yan, WANG Pei-Jie. Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 116801
[10] ZHANG Yang, LI Xue-Hong, PENG Cheng-Xiao. Modification of Photoluminescence Properties of ZnO Island Films by Localized Surface Plasmons[J]. Chin. Phys. Lett., 2012, 29(10): 116801
[11] WANG Ying, SONG Zhong-Xiao, ZHANG Mi-Lin. Performance Improved by Incorporating of Ru Atoms into Zr-Si Diffusion Barrier for Cu Metallization[J]. Chin. Phys. Lett., 2012, 29(9): 116801
[12] LI Deng-Feng **, GUO Zhi-Cheng, LI Bo-Lin, DONG Hui-Ning, XIAO Hai-Yan . Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface[J]. Chin. Phys. Lett., 2011, 28(8): 116801
[13] HUANG Hai-Chao, WANG Hai-Bo, YAN Dong-Hang. Heterojunction Effect in Weak Epitaxy Growth Thin Films Investigated by Kelvin Probe Force Microscopy[J]. Chin. Phys. Lett., 2010, 27(8): 116801
[14] LI Deng-Feng, XIAO Hai-Yan, XUE Shu-Wen, YANG Li, ZU Xiao-Tao. Surface Structure and Electronic Property of InP(001)-(2×1)S Surface: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(4): 116801
[15] YUN Jiang-Ni, ZHANG Zhi-Yong, YAN Jun-Feng, ZHANG Fu-Chun. First Principles Study of Adsorption and Reaction of CO on SrTiO3 (100) Surface: the Role of Surface Oxygen Vacancies[J]. Chin. Phys. Lett., 2010, 27(1): 116801
Viewed
Full text


Abstract