Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 116701    DOI: 10.1088/0256-307X/34/11/116701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Spin Dynamics in Ferromagnet/10-nm-Thick N-Type GaAs Quantum Well Junctions
Xiao-Chen Ji1,2, Chao Shen1,2, Yuan-Jun Wu1,2, Jun Lu1,2, Hou-Zhi Zheng1,2**
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408
Cite this article:   
Xiao-Chen Ji, Chao Shen, Yuan-Jun Wu et al  2017 Chin. Phys. Lett. 34 116701
Download: PDF(908KB)   PDF(mobile)(906KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction, the spin lifetime of the MnGa/modulation-doped 10-nm-thick n-type GaAs QW junction is shorter by a factor of 5, consistent with the D'yakonov–Perel' spin relaxation mechanism. Meanwhile, compared with the spin lifetime of the MnAs/in-situ doped 10-nm-thick n-type GaAs QW junction, the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction is of a spin lifetime longer by a factor of 4.2. The later observation is well explained by the Rashba effect in the presence of structure inversion asymmetry, which acts directly on photo-excited electron spins. We demonstrate that MnGa-like FM/in-situ doped 10-nm-thick n-type GaAs QW junctions, which possess relatively low interfacial potential barriers, are able to provide long spin lifetimes.
Received: 13 July 2017      Published: 25 October 2017
PACS:  67.30.hj (Spin dynamics)  
  73.21.Fg (Quantum wells)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/116701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/116701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Chen Ji
Chao Shen
Yuan-Jun Wu
Jun Lu
Hou-Zhi Zheng
[1]Kawakami R K, Kato Y, Hanson M, Malajovich I, Stephens J M, Johnston-Halperin E, Salis G, Gossard A C and Awschalom D D 2001 Science 294 131
[2]Epstein R J, Malajovich I, Kawakami R K, Chye Y, Hanson M, Petroff P M, Gossard A C and Awschalom D D 2002 Phys. Rev. B 65 121202
[3]Epstein R J, Stephens J, Hanson M, Chye Y, Gossard A C, Petroff P M and Awschalom D D 2003 Phys. Rev. B 68 041305
[4]Ciuti C, McGuire J P and Sham L J 2002 Appl. Phys. Lett. 81 4781
[5]Tanobe H, Koyama F and Iga K 1992 Jpn. J. Appl. Phys. 31 1597
[6]Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731
[7]Malinowski A, Britton R S, Grevatt T, Harley R T, Ritchie D A and Simmons M Y 2000 Phys. Rev. B 62 13034
[8]Anghel S, Singh A, Passmann F, Iwata H, Moore J N, Yusa G, Li X and Betz M 2016 Phys. Rev. B 94 035303
[9]Maialle M Z, de Andrada e Silva E A and Sham L J 1993 Phys. Rev. B 47 15776
[10]D'yakonov M I and Perel' V I 1971 Sov. Phys. JETP 33 1053
[11]Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer) chap 4 p 107
[12]Bauer G E W, Brataas A, Tserkovnyak Y, Halperin B I, Zwierzycki M and Kelly P J 2004 Phys. Rev. Lett. 92 126601
[13]Hao Y F, Chen Y H, Hao G D and Wang Z G 2009 Chin. Phys. Lett. 26 077104
[14]Eldridge P S, Leyland W J H, Lagoudakis P G, Karimov O Z, Henini M, Taylor D, Phillips R T and Harley R T 2008 Phys. Rev. B 77 125344
[15]Kikkawa J M and Awschalom D D 1999 Nature 397 139
[16]Snelling M J, Flinn G P, Plaut A S, Harley R T, Tropper A C, Eccleston R and Phillips C C 1991 Phys. Rev. B 44 11345
Related articles from Frontiers Journals
[1] Hao-Hao Peng, Jun-Jie Zhang, Xin-Li Sheng, and Qun Wang. Ideal Spin Hydrodynamics from the Wigner Function Approach[J]. Chin. Phys. Lett., 2021, 38(11): 116701
Viewed
Full text


Abstract