CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Spin Dynamics in Ferromagnet/10-nm-Thick N-Type GaAs Quantum Well Junctions |
Xiao-Chen Ji1,2, Chao Shen1,2, Yuan-Jun Wu1,2, Jun Lu1,2, Hou-Zhi Zheng1,2** |
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408
|
|
Cite this article: |
Xiao-Chen Ji, Chao Shen, Yuan-Jun Wu et al 2017 Chin. Phys. Lett. 34 116701 |
|
|
Abstract Spin dynamics in several different types of ferromagnetic metal (FM)/10-nm-thick n-type GaAs quantum well (QW) junctions is studied by means of time-resolved Kerr rotation measurements. Compared with the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction, the spin lifetime of the MnGa/modulation-doped 10-nm-thick n-type GaAs QW junction is shorter by a factor of 5, consistent with the D'yakonov–Perel' spin relaxation mechanism. Meanwhile, compared with the spin lifetime of the MnAs/in-situ doped 10-nm-thick n-type GaAs QW junction, the MnGa/in-situ doped 10-nm-thick n-type GaAs QW junction is of a spin lifetime longer by a factor of 4.2. The later observation is well explained by the Rashba effect in the presence of structure inversion asymmetry, which acts directly on photo-excited electron spins. We demonstrate that MnGa-like FM/in-situ doped 10-nm-thick n-type GaAs QW junctions, which possess relatively low interfacial potential barriers, are able to provide long spin lifetimes.
|
|
Received: 13 July 2017
Published: 25 October 2017
|
|
PACS: |
67.30.hj
|
(Spin dynamics)
|
|
73.21.Fg
|
(Quantum wells)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
|
|
|
[1] | Kawakami R K, Kato Y, Hanson M, Malajovich I, Stephens J M, Johnston-Halperin E, Salis G, Gossard A C and Awschalom D D 2001 Science 294 131 | [2] | Epstein R J, Malajovich I, Kawakami R K, Chye Y, Hanson M, Petroff P M, Gossard A C and Awschalom D D 2002 Phys. Rev. B 65 121202 | [3] | Epstein R J, Stephens J, Hanson M, Chye Y, Gossard A C, Petroff P M and Awschalom D D 2003 Phys. Rev. B 68 041305 | [4] | Ciuti C, McGuire J P and Sham L J 2002 Appl. Phys. Lett. 81 4781 | [5] | Tanobe H, Koyama F and Iga K 1992 Jpn. J. Appl. Phys. 31 1597 | [6] | Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731 | [7] | Malinowski A, Britton R S, Grevatt T, Harley R T, Ritchie D A and Simmons M Y 2000 Phys. Rev. B 62 13034 | [8] | Anghel S, Singh A, Passmann F, Iwata H, Moore J N, Yusa G, Li X and Betz M 2016 Phys. Rev. B 94 035303 | [9] | Maialle M Z, de Andrada e Silva E A and Sham L J 1993 Phys. Rev. B 47 15776 | [10] | D'yakonov M I and Perel' V I 1971 Sov. Phys. JETP 33 1053 | [11] | Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer) chap 4 p 107 | [12] | Bauer G E W, Brataas A, Tserkovnyak Y, Halperin B I, Zwierzycki M and Kelly P J 2004 Phys. Rev. Lett. 92 126601 | [13] | Hao Y F, Chen Y H, Hao G D and Wang Z G 2009 Chin. Phys. Lett. 26 077104 | [14] | Eldridge P S, Leyland W J H, Lagoudakis P G, Karimov O Z, Henini M, Taylor D, Phillips R T and Harley R T 2008 Phys. Rev. B 77 125344 | [15] | Kikkawa J M and Awschalom D D 1999 Nature 397 139 | [16] | Snelling M J, Flinn G P, Plaut A S, Harley R T, Tropper A C, Eccleston R and Phillips C C 1991 Phys. Rev. B 44 11345 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|