Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 116101    DOI: 10.1088/0256-307X/34/11/116101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Synthesis of Different TiO$_{2}$ Nanostructures and Their Physical Properties
T. Hoseinzadeh1, Z. Ghorannevis2, M. Ghoranneviss1**, M. K. Salem1, A. H. Sari1
1Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Physics, Karaj Branch, Islamic Azad University, Karaj, Iran
Cite this article:   
T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss et al  2017 Chin. Phys. Lett. 34 116101
Download: PDF(1420KB)   PDF(mobile)(1418KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Titanium dioxide (TiO$_{2}$) nanosheet, nanorod and nanotubes are synthesized using chemical vapor deposition (CVD) and anodizing processes. TiO$_{2}$ nanosheets are grown on Ti foil which is coated with Au catalyst in CVD, TiO$_{2}$ nanorods are synthesized on treated Ti foil with HCl by CVD, and TiO$_{2}$ nanotubes are prepared by the three-step anodization method. Scanning electron microscopy shows the final TiO$_{2}$ structures prepared using three processes with three different morphologies of nanosheet, nanorod and nanotube. X-ray diffraction verifies the presence of TiO$_{2}$. TiO$_{2}$ sheets and rods are crystalized in rutile phase, and TiO$_{2}$ tubes after annealing turn into the anatase crystal phase. The optical investigations carried out by diffuse reflection spectroscopy reveal that the morphology of TiO$_{2}$ nanostructures influencing their optical response and band gap energy of TiO$_{2}$ is changed for different TiO$_{2}$ nanostructures.
Received: 11 August 2017      Published: 25 October 2017
PACS:  61.05.-a (Techniques for structure determination)  
  61.46.Np (Structure of nanotubes (hollow nanowires))  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/116101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/116101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Hoseinzadeh
Z. Ghorannevis
M. Ghoranneviss
M. K. Salem
A. H. Sari
[1]Chen X and Mao S S 2007 Chem. Rev. 107 2891
[2]Mor G K, Varghese O K, Paulose M, Shankar K and Grimes C A 2006 Sol. Energy Mater. Sol. Cells 90 2011
[3]Kamat P V 2012 J. Phys. Chem. C 116 11849
[4]Chen D and Caruso R A 2012 Adv. Funct. Mater. 22 1966
[5]Daghrir R, Drogui P and Robert D 2013 Ind. Eng. Chem. Res. 52 3581
[6]Movafaghi S et al 2016 Lap Chip 16 3204
[7]Movafaghi S et al 2017 Adv. Healthcare Mater. 6 1600717
[8]Tétreault N and Gratzel M 2012 Energy Environ. Sci. 5 8506
[9]Zhang Q F and Cao G Z 2011 J. Mater. Chem. 21 6769
[10]Mora-Ser I, Gimnez S, Fabregat-Santiago F, Gmez R, Shen Q, Toyoda T and Bisquert J 2009 Acc. Chem. Res. 42 1848
[11]Grätzel M 2009 Acc. Chem. Res. 42 1788
[12]Boschloo G, Hagfeldt A, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595
[13]Rühle S, Shalom M and Zaban A 2010 ChemPhysChem 11 2290
[14]Lan X, Bai J, Masala S, M Thon S, Ren Y et al 2013 Adv. Mater. 25 1769
[15]Hoseinzadeh T, Ghorannevis Z and Ghoranneviss M 2017 Appl. Phys. A 123 436
[16]Badescu V and Mormirlan M 1996 J. Cryst. Growth 169 309
[17]Li S, Zhang G, Guo D, Ligang Yu and Zhang W 2009 J. Phys. Chem. C 113 12759
[18]Czerwinski F and Szpunar J A 1998 Micron 29 201
[19]Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1
[20]Tryk D A, Fujishima A and Honda K 2000 Electrochim. Acta 45 2363
[21]Herrmann J M 2005 Top. Catalysis 34 49
[22]Yu J G and Wang B 2010 Appl. Catal. B 94 295
[23]Wood D and Tauc J 1972 Phys. Rev. B 5 3144
Related articles from Frontiers Journals
[1] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 116101
[2] Jian Zhang, Shengxi Zhang, Xiaofang Qiu, Yan Wu, Qiang Sun, Jin Zou, Tianxin Li, Pingping Chen. MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs[J]. Chin. Phys. Lett., 2020, 37(3): 116101
[3] Xin Li, Jing-Zhi Han, Xiong-Zuo Zhang, Yin-Feng Zhang, Hai-Dong Tian, Ming-Zhu Xue, Kun Li, Xin Wen, Wen-Yun Yang, Shun-Quan Liu, Chang-Sheng Wang, Hong-Lin Du, Xiao-Dong Zhang, Xin-An Wang, Ying-Chang Yang, Jin-Bo Yang. Strain Induced Nanopillars and Variation of Magnetic Properties in La$_{0.825}$Sr$_{0.175}$MnO$_{3}$/LaAlO$_{3}$ Films[J]. Chin. Phys. Lett., 2019, 36(4): 116101
[4] Shu-qin Lv, Wen-jia Han, Jian-gang Yu, Hang Zhou, Mi Liu, Chang-an Chen, Kai-gui Zhu. Blistering and Helium Retention of Tungsten and 5% Chromium Doped Tungsten Exposed to 60keV Helium Ions Irradiation[J]. Chin. Phys. Lett., 2018, 35(12): 116101
[5] T. Hoseinzadeh, M. Ghoranneviss, E. Akbarnejad, Z. Ghorannevis. Growth and Physical Properties of CdS/TiO$_{2}$ Bilayer by Plasma-Based Method[J]. Chin. Phys. Lett., 2018, 35(3): 116101
[6] SUN Qing-Ling, WANG Lu, WANG Wen-Qi, SUN Ling, LI Mei-Cheng, WANG Wen-Xin, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth and Characterization of InAs1?xSbx with Different Sb Compositions on GaAs Substrates[J]. Chin. Phys. Lett., 2015, 32(10): 116101
[7] LU Xue-Hui, KANG Lin, ZHOU Lei, CHEN Jian, JI Zheng-Ming, CAO Chun-Hai, JIN Biao-Bing, XU Wei-Wei, WU Pei-Heng, WANG Xiao-Shu. Growth and Characterization of a Kind of Nitrogen-Rich Niobium Nitride for Bolometer Applications at Terahertz Frequencies[J]. Chin. Phys. Lett., 2008, 25(11): 116101
Viewed
Full text


Abstract