CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Synthesis of Different TiO$_{2}$ Nanostructures and Their Physical Properties |
T. Hoseinzadeh1, Z. Ghorannevis2, M. Ghoranneviss1**, M. K. Salem1, A. H. Sari1 |
1Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran 2Department of Physics, Karaj Branch, Islamic Azad University, Karaj, Iran
|
|
Cite this article: |
T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss et al 2017 Chin. Phys. Lett. 34 116101 |
|
|
Abstract Titanium dioxide (TiO$_{2}$) nanosheet, nanorod and nanotubes are synthesized using chemical vapor deposition (CVD) and anodizing processes. TiO$_{2}$ nanosheets are grown on Ti foil which is coated with Au catalyst in CVD, TiO$_{2}$ nanorods are synthesized on treated Ti foil with HCl by CVD, and TiO$_{2}$ nanotubes are prepared by the three-step anodization method. Scanning electron microscopy shows the final TiO$_{2}$ structures prepared using three processes with three different morphologies of nanosheet, nanorod and nanotube. X-ray diffraction verifies the presence of TiO$_{2}$. TiO$_{2}$ sheets and rods are crystalized in rutile phase, and TiO$_{2}$ tubes after annealing turn into the anatase crystal phase. The optical investigations carried out by diffuse reflection spectroscopy reveal that the morphology of TiO$_{2}$ nanostructures influencing their optical response and band gap energy of TiO$_{2}$ is changed for different TiO$_{2}$ nanostructures.
|
|
Received: 11 August 2017
Published: 25 October 2017
|
|
PACS: |
61.05.-a
|
(Techniques for structure determination)
|
|
61.46.Np
|
(Structure of nanotubes (hollow nanowires))
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
|
|
|
[1] | Chen X and Mao S S 2007 Chem. Rev. 107 2891 | [2] | Mor G K, Varghese O K, Paulose M, Shankar K and Grimes C A 2006 Sol. Energy Mater. Sol. Cells 90 2011 | [3] | Kamat P V 2012 J. Phys. Chem. C 116 11849 | [4] | Chen D and Caruso R A 2012 Adv. Funct. Mater. 22 1966 | [5] | Daghrir R, Drogui P and Robert D 2013 Ind. Eng. Chem. Res. 52 3581 | [6] | Movafaghi S et al 2016 Lap Chip 16 3204 | [7] | Movafaghi S et al 2017 Adv. Healthcare Mater. 6 1600717 | [8] | Tétreault N and Gratzel M 2012 Energy Environ. Sci. 5 8506 | [9] | Zhang Q F and Cao G Z 2011 J. Mater. Chem. 21 6769 | [10] | Mora-Ser I, Gimnez S, Fabregat-Santiago F, Gmez R, Shen Q, Toyoda T and Bisquert J 2009 Acc. Chem. Res. 42 1848 | [11] | Grätzel M 2009 Acc. Chem. Res. 42 1788 | [12] | Boschloo G, Hagfeldt A, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595 | [13] | Rühle S, Shalom M and Zaban A 2010 ChemPhysChem 11 2290 | [14] | Lan X, Bai J, Masala S, M Thon S, Ren Y et al 2013 Adv. Mater. 25 1769 | [15] | Hoseinzadeh T, Ghorannevis Z and Ghoranneviss M 2017 Appl. Phys. A 123 436 | [16] | Badescu V and Mormirlan M 1996 J. Cryst. Growth 169 309 | [17] | Li S, Zhang G, Guo D, Ligang Yu and Zhang W 2009 J. Phys. Chem. C 113 12759 | [18] | Czerwinski F and Szpunar J A 1998 Micron 29 201 | [19] | Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1 | [20] | Tryk D A, Fujishima A and Honda K 2000 Electrochim. Acta 45 2363 | [21] | Herrmann J M 2005 Top. Catalysis 34 49 | [22] | Yu J G and Wang B 2010 Appl. Catal. B 94 295 | [23] | Wood D and Tauc J 1972 Phys. Rev. B 5 3144 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|