Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 114301    DOI: 10.1088/0256-307X/34/11/114301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Propagation Properties of Backward Lamb Waves in Plate Investigated by Dynamic Photoelastic Technique
Zhong-Tao Hu1,2, Zhi-Wu An1**, Guo-Xuan Lian1, Xiao-Min Wang1
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Zhong-Tao Hu, Zhi-Wu An, Guo-Xuan Lian et al  2017 Chin. Phys. Lett. 34 114301
Download: PDF(649KB)   PDF(mobile)(648KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S$_{\rm 2b}$ in contrast to third-order anti-symmetric backward mode A$_{\rm 3b}$ is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S$_{\rm 2b}$ and A$_{\rm 3b}$ in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.
Received: 28 July 2017      Published: 25 October 2017
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  43.20.+g (General linear acoustics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11374325 and 11427809.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/114301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/114301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Tao Hu
Zhi-Wu An
Guo-Xuan Lian
Xiao-Min Wang
[1]Wolf J, Ngoc T D K and Kille R 1988 J. Acoust. Soc. Am. 83 122
[2]Marston P L 2003 J. Acoust. Soc. Am. 113 2659
[3]Cui H, Lin W, Zhang H, Wang X and Trevelyan J 2016 J. Acoust. Soc. Am. 139 1179
[4]Jiang X P, Qian M L and Cheng Q 2013 Chin. Phys. Lett. 30 084302
[5]Qiao D H, Wang C H and Wang Z Q 2006 Chin. Phys. Lett. 23 1834
[6]Seungil K 2012 Chin. Phys. Lett. 29 124301
[7]Yuan Z D and Cheng J C 2005 Chin. Phys. Lett. 22 889
[8]Philippe F D, Murray T W and Prada C 2015 Sci. Rep. 5 11112
[9]Xu Z, Qian M L, Cheng Q and Liu X J 2016 Chin. Phys. Lett. 33 114302
[10]Ivan T and Usdin E 1957 J. Acoust. Soc. Am. 29 37
[11]Negishi K 1987 Jpn. J. Appl. Phys. 26 171
[12]Prada C, Clorennec D and Royer D 2008 J. Acoust. Soc. Am. 124 203
[13]Negishi K and Li H U 1996 Jpn. J. Appl. Phys. 35 3175
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 114301
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 114301
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 114301
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 114301
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 114301
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 114301
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 114301
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 114301
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 114301
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 114301
[11] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 114301
[12] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 114301
[13] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 114301
[14] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 114301
[15] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 114301
Viewed
Full text


Abstract