Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 114202    DOI: 10.1088/0256-307X/34/11/114202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Generation of 2.5μm and 4.6μm Dispersive Waves in Kagome Photonic Crystal Fiber with Plasma Production
Tian-Qi Zhao, Meng Li, Dong Wei, Xin Ding, Gui-Zhong Zhang**, Jian-Quan Yao
College of Precision Instrument and Optoelectronics Engineering, and Key Lab of Optoelectronic Information Technology of the Ministry of Education, Tianjin University, Tianjin 300072
Cite this article:   
Tian-Qi Zhao, Meng Li, Dong Wei et al  2017 Chin. Phys. Lett. 34 114202
Download: PDF(1040KB)   PDF(mobile)(1028KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report our numerical simulation on dispersive waves (DWs) generated in the Kr-filled Kagome hollow-core photonic crystal fiber, by deploying the unidirectional pulse propagation equation. Relatively strong dispersive waves are simultaneously generated at 2.5 μm and 4.6 μm. It is deciphered that the interplay between plasma currents due to Kr ionization and nonlinear effects plays a key role in DW generation. Remarkably, this kind of DW generation is corroborated by the plasma-corrected phase-matching condition.
Received: 03 August 2017      Published: 25 October 2017
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  52.38.-r (Laser-plasma interactions)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674243 and 11674242.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/114202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/114202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tian-Qi Zhao
Meng Li
Dong Wei
Xin Ding
Gui-Zhong Zhang
Jian-Quan Yao
[1]Benabid F et al 2002 Science 298 399
[2]Travers J C et al 2011 J. Opt. Soc. Am. B 28 A11
[3]Russell P S J et al 2014 Nat. Photon. 8 278
[4]Pearce G et al 2007 Opt. Express 15 12680
[5]Wang Y Y et al 2011 Opt. Lett. 36 669
[6]Couny F et al 2006 Opt. Lett. 31 3574
[7]Holzer P et al 2011 Phys. Rev. Lett. 107 203901
[8]Perez H et al 2015 Laser Phys. Lett. 12 055102
[9]Finger M A et al 2014 Opt. Lett. 39 821
[10]Im S et al 2009 Opt. Express 17 13050
[11]Nold J et al 2010 Opt. Lett. 35 2922
[12]Mak K F et al 2013 Opt. Lett. 38 3592
[13]Bejot P et al 2010 Phys. Rev. Lett. 104 103903
[14]Chang W et al 2013 Opt. Lett. 38 2984
[15]Ghenuche P et al 2012 Opt. Lett. 37 4371
[16]Wai P K A et al 1986 Opt. Lett. 11 464
[17]Akhmediev N and Karlsson M 1995 Phys. Rev. A 51 2602
[18]Beaud P et al 1987 IEEE J. Quantum Electron. 23 1938
[19]Skryabin D V et al 2003 Science 301 1705
[20]Cristiani I et al 2004 Opt. Express 12 124
[21]Erkintalo M et al 2010 Opt. Express 18 13379
[22]Hou L T et al 2012 Acta Phys. Sin. 61 124203 (in Chinese)
[23]Wright L G et al 2015 Opt. Express 23 3492
[24]Tu H et al 2013 Opt. Express 21 23188
[25]Husakou A and Herrmann J 2002 J. Opt. Soc. Am. B 19 2171
[26]Wang W et al 2013 Opt. Express 21 11215
[27]Zhou B et al 2015 Opt. Express 23 6924
[28]Novoa D et al 2015 Phys. Rev. Lett. 115 033901
[29]Bendahmane A et al 2015 Opt. Express 23 16595
[30]Petersen C R et al 2016 Opt. Express 24 749
[31]Roskos H G et al 2007 Laser Photon. Rev. 1 349
[32]Chang W et al 2011 Opt. Express 19 21018
[33]Martinez P G et al 2015 Phys. Rev. Lett. 114 183901
[34]Wright L G et al 2015 Phys. Rev. Lett. 115 223902
[35]Billet M et al 2014 Opt. Express 22 25673
[36]Husakou A V and Herrmann J 2001 Phys. Rev. Lett. 87 203901
[37]Mussot A et al 2007 Opt. Express 15 11553
[38]Kottig F et al 2017 Phys. Rev. Lett. 118 263902
[39]Cheng T et al 2015 Opt. Express 23 20647
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 114202
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 114202
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 114202
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 114202
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 114202
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 114202
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 114202
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 114202
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 114202
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 114202
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 114202
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 114202
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 114202
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 114202
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 114202
Viewed
Full text


Abstract