FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Dual-Wavelength Passively Q-Switched Ytterbium-Doped Fiber Laser Based on Aluminum Oxide Nanoparticle Saturable Absorbers |
S. K. M. Al-Hayali1**, S. Selleri2, A. H. Al-Janabi1 |
1Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq 2Department of Information Engineering, Parma University, Viale delle Scienze 181/A, Parma, Italy
|
|
Cite this article: |
S. K. M. Al-Hayali, S. Selleri, A. H. Al-Janabi 2017 Chin. Phys. Lett. 34 114201 |
|
|
Abstract We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al$_{2}$O$_{3}$-NP) thin film. A thin film of Al$_{2}$O$_{3}$ was prepared by embedding Al$_{2}$O$_{3}$-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al$_{2}$O$_{3}$-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7 nm is observed at threshold pump power of 80 mW. As the pump power is gradually increased from 80 to 300 mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6 μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
|
|
Received: 22 August 2017
Published: 25 October 2017
|
|
|
|
Fund: Supported by the Iraqi Ministry of Higher Education and Scientific Research, and University of Baghdad. |
|
|
[1] | Luo Z Q, Huang Y Z, Weng J, Cheng H H, Lin Z Q, Xu B, Cai Z P and Xu H Y 2013 Opt. Express 21 29516 | [2] | Zhao J Q, Wang Y G, Yan P G, Ruan S C, Tsang Y, Zhang G L and Li H Q 2014 Opt. Commun. 312 227 | [3] | Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202 | [4] | Wang X D, Liu H C, Zhao N, Liu M, Zhu Y F, Xue J P, Luo A P and Xu W C 2015 Opt. Commun. 346 21 | [5] | Paschotta R, Häring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388 | [6] | Ahmad H, Zulkifli A Z, Thambiratnam K and Harun S W 2013 IEEE Photon. J. 5 1501108 | [7] | Song R, Chen H W, Chen S P, Hou J and Lu Q S 2011 J. Opt. 13 035201 | [8] | Mohammed D Z and Al-Janabi A H 2016 Laser Phys. 26 115108 | [9] | Zhao J Q et al 2012 Chin. Phys. Lett. 29 114206 | [10] | Tang P, Zhang X, Zhao C, Wang Y, Zhang H, Shen D, Wen S, Tang D and Fan D 2013 IEEE Photon. J. 5 1500707 | [11] | Schmidt A, Rivier S, Steinmeyer G, Yim J H, Cho W B, Lee S, Rotermund F, Pujol M C, Mateos X, Aguiló M, Díaz F, Petrov V and Griebner U 2008 Opt. Lett. 33 729 | [12] | Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 | [13] | Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2015 Sci. Rep. 4 6346 | [14] | Zulkhairi A S, Azzuhri S R, Shaharuddin R A, Jaddoa M F, Salim M A M, Jasim A A and Ahmad H 2017 Laser Phys. 27 055104 | [15] | Chi R, Lu K and Chen S 2003 Microwave Opt. Technol. Lett. 36 170 | [16] | Ahmad H, Salim M A M, Soltanian M R K, Azzuhria S R and Harun S W 2015 J. Mod. Opt. 62 1550 | [17] | Ahmad H, Salim M A M, Ali Z A, Ismail M F, Thambiratnam K, Latif A A, Nayan N and Harun S W 2016 Chin. Opt. Lett. 14 091403 | [18] | Apel O, Mann K and Marowsky G 2000 Appl. Phys. A 71 593 | [19] | Al-Hayali S K M, Mohammed D Z, Khaleel W A and Al-Janabi A H 2017 Appl. Opt. 56 4720 | [20] | Ahmad H, Sharbirin A S, Muhamad A, Samion M Z, Reduan S A, Zulkifli A Z and Ismail M F 2017 J. Lightwave Technol. 35 2470 | [21] | Wang Z T, Chen Y, Zhao C J, Zhang H and Wen S C 2012 IEEE Photon. J. 4 869 | [22] | Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692 | [23] | Chiu J C, Lan Y F, Chang C M, Chen X Z, Yeh C Y, Lee C K, Lin G R, Lin J J and Cheng W H 2010 Opt. Express 18 3592 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|