Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 110601    DOI: 10.1088/0256-307X/34/11/110601
GENERAL |
Computed Tidal Relativistic Red-Shifts of Frequency Standards on Earth and in Space Stations
Wei Zhuang**, Fang Fang, Shao-Kai Wang, Yang Zhao, Tian-Chu Li**
National Institute of Metrology, Beijing 100029
Cite this article:   
Wei Zhuang, Fang Fang, Shao-Kai Wang et al  2017 Chin. Phys. Lett. 34 110601
Download: PDF(903KB)   PDF(mobile)(898KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Frequencies of frequency standards are shifted by the local static gravity red shifts and also modulated by the tidal relativistic red shifts. We compute the tidal relativistic red shifts using a time-domain method and present the numerical results for the National Institute of Metrology (NIM) in Beijing, Laboratoire National de Métrologie et Essais-Système de Références Temps-Espace (LNE-SYRTE) in Paris and Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. The differences of the tidal relativistic red shift approach as large as $1.1\times10^{-16}$ when frequency standards at NIM are compared with those at SYRTE and PTB. Moreover, the tidal relativistic red shifts of frequency standards in space stations are also computed.
Received: 07 August 2017      Published: 25 October 2017
PACS:  06.30.Ft (Time and frequency)  
  95.30.Sf (Relativity and gravitation)  
  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
  92.60.hh (Acoustic gravity waves, tides, and compressional waves)  
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFF0200200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/110601       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/110601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Zhuang
Fang Fang
Shao-Kai Wang
Yang Zhao
Tian-Chu Li
[1]Terrien J 1968 Metrologia 4 41
[2]Clairon A, Laurent P, Santarelli G et al 1995 IEEE Trans. Instrum. Meas. IM 44 128
[3]Fang F, Li M, Lin P et al 2015 Metrologia 52 454
[4]Hafele J and Keating R 1972 Science 177 168
[5]Vessot R, Levine M, Mattison E et al 1980 Phys. Rev. Lett. 45 2081
[6]Chou C, Hume D, Rosenband T et al 2010 Science 329 1630
[7]Pavlis N and Weiss M 2003 Metrologia 40 66
[8]Lisdat C, Grosche G, Quintin N et al 2016 Nat. Commun. 7 12443
[9]Petis G and Wolf P 1997 IEEE Trans. Instrum. Meas. 46 201
[10]Kleppner D 2006 Phys. Today 59 10
[11]Voigt C, Denker H and Timmen L 2016 Metrologia 53 1365
[12]Herring T 2009 Geodesy: Treatise Geophys. (Amsterdam: Elsevier) vol 3 chap 6 p 166
[13]Ashby N 2003 Living Rev. Relativ. 6 1
[14]Doodson A 1921 Proc. R. Soc. London Ser. A 100 305
[15]Brown E 1905 Mem. R. Astron. Soc. 57 136
[16]Eckhert W, Jones R and Clark H 1954 Improved Lunar Ephemeris 1952-1959 (Washington DC: US Government Pringting Office) p 286
[17]Merriam J 1992 Geophys. J. Int. 108 415
[18]Seidelmann P 1982 Celestial Mech. 27 79
[19]Hartmann T and Wenzel H 1995 Geophys. Res. Lett. 22 3553
[20]Van Camp M and Vauterin P 2005 Comput. Geosci. 31 631
[21]Lin Y, Wang Q, Li Y et al 2015 Chin. Phys. Lett. 32 090601
[22]Huang Y, Guan H, Liu P et al 2016 Phys. Rev. Lett. 116 013001
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 110601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 110601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 110601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 110601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 110601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 110601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 110601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 110601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 110601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 110601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 110601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 110601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 110601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 110601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 110601
Viewed
Full text


Abstract