GENERAL |
|
|
|
|
Computed Tidal Relativistic Red-Shifts of Frequency Standards on Earth and in Space Stations |
Wei Zhuang**, Fang Fang, Shao-Kai Wang, Yang Zhao, Tian-Chu Li** |
National Institute of Metrology, Beijing 100029
|
|
Cite this article: |
Wei Zhuang, Fang Fang, Shao-Kai Wang et al 2017 Chin. Phys. Lett. 34 110601 |
|
|
Abstract Frequencies of frequency standards are shifted by the local static gravity red shifts and also modulated by the tidal relativistic red shifts. We compute the tidal relativistic red shifts using a time-domain method and present the numerical results for the National Institute of Metrology (NIM) in Beijing, Laboratoire National de Métrologie et Essais-Système de Références Temps-Espace (LNE-SYRTE) in Paris and Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. The differences of the tidal relativistic red shift approach as large as $1.1\times10^{-16}$ when frequency standards at NIM are compared with those at SYRTE and PTB. Moreover, the tidal relativistic red shifts of frequency standards in space stations are also computed.
|
|
Received: 07 August 2017
Published: 25 October 2017
|
|
PACS: |
06.30.Ft
|
(Time and frequency)
|
|
95.30.Sf
|
(Relativity and gravitation)
|
|
07.87.+v
|
(Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))
|
|
92.60.hh
|
(Acoustic gravity waves, tides, and compressional waves)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFF0200200. |
|
|
[1] | Terrien J 1968 Metrologia 4 41 | [2] | Clairon A, Laurent P, Santarelli G et al 1995 IEEE Trans. Instrum. Meas. IM 44 128 | [3] | Fang F, Li M, Lin P et al 2015 Metrologia 52 454 | [4] | Hafele J and Keating R 1972 Science 177 168 | [5] | Vessot R, Levine M, Mattison E et al 1980 Phys. Rev. Lett. 45 2081 | [6] | Chou C, Hume D, Rosenband T et al 2010 Science 329 1630 | [7] | Pavlis N and Weiss M 2003 Metrologia 40 66 | [8] | Lisdat C, Grosche G, Quintin N et al 2016 Nat. Commun. 7 12443 | [9] | Petis G and Wolf P 1997 IEEE Trans. Instrum. Meas. 46 201 | [10] | Kleppner D 2006 Phys. Today 59 10 | [11] | Voigt C, Denker H and Timmen L 2016 Metrologia 53 1365 | [12] | Herring T 2009 Geodesy: Treatise Geophys. (Amsterdam: Elsevier) vol 3 chap 6 p 166 | [13] | Ashby N 2003 Living Rev. Relativ. 6 1 | [14] | Doodson A 1921 Proc. R. Soc. London Ser. A 100 305 | [15] | Brown E 1905 Mem. R. Astron. Soc. 57 136 | [16] | Eckhert W, Jones R and Clark H 1954 Improved Lunar Ephemeris 1952-1959 (Washington DC: US Government Pringting Office) p 286 | [17] | Merriam J 1992 Geophys. J. Int. 108 415 | [18] | Seidelmann P 1982 Celestial Mech. 27 79 | [19] | Hartmann T and Wenzel H 1995 Geophys. Res. Lett. 22 3553 | [20] | Van Camp M and Vauterin P 2005 Comput. Geosci. 31 631 | [21] | Lin Y, Wang Q, Li Y et al 2015 Chin. Phys. Lett. 32 090601 | [22] | Huang Y, Guan H, Liu P et al 2016 Phys. Rev. Lett. 116 013001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|