Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 110501    DOI: 10.1088/0256-307X/34/11/110501
GENERAL |
Thermodynamic Performance of Three-Terminal Hybrid Quantum Dot Thermoelectric Devices
Zhi-Cheng Shi, Jing Fu, Wei-Feng Qin, Ji-Zhou He**
Department of Physics, Nanchang University, Nanchang 330031
Cite this article:   
Zhi-Cheng Shi, Jing Fu, Wei-Feng Qin et al  2017 Chin. Phys. Lett. 34 110501
Download: PDF(997KB)   PDF(mobile)(1000KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermodynamic laws, we examine the reversible efficiencies of the four different models. Based on the master equation, the expressions for the efficiency and power output are derived and the corresponding working regions are determined. Moreover, we particularly analyze the performance of a three-terminal hybrid quantum dot refrigerator. The performance characteristic curves and the optimal performance parameters are obtained. Finally, we discuss the influence of the nonradiative effects on the optimal performance parameters in detail.
Received: 22 March 2017      Published: 25 October 2017
PACS:  05.70.-a (Thermodynamics)  
  73.50.Lw (Thermoelectric effects)  
  73.63.Kv (Quantum dots)  
  85.80.Fi (Thermoelectric devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11365015.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/110501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/110501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Cheng Shi
Jing Fu
Wei-Feng Qin
Ji-Zhou He
[1]Sothmann B, Sanchez R and Jordan A N 2015 Nanotechnology 26 032001
[2]Edwards H L, Niu Q and De Lozanne A L 1993 Appl. Phys. Lett. 63 1815
[3]Edwards H L, Niu Q, Georgakis G A and De Lozanne A L 1995 Phys. Rev. B 52 5714
[4]Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D A, Jones G A C, Farrer I and Ritchie D A 2009 Phys. Rev. Lett. 102 146602
[5]Jordan A N, Sothmann B, Sanchez R and Büttiker M 2013 Phys. Rev. B 87 075312
[6]Sothmann B, Sanchez R, Jordan A N and Büttiker M 2013 New J. Phys. 15 095021
[7]Su S H, Zhang Y C, Chen J C and Shih T M 2016 Sci. Rep. 6 21425
[8]Su G Z, Zhang Y C, Cai L Su S H and Chen J C 2015 Energy 90 1842
[9]Su H, Shi Z C and He J Z 2015 Chin. Phys. Lett. 32 100501
[10]Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412
[11]Jiang J H 2014 J. Appl. Phys. 116 194303
[12]Sanchez R and Büttiker M 2011 Phys. Rev. B 83 085428
[13]Zhang Y C, Lin G X and Chen J C 2015 Phys. Rev. E 91 052118
[14]Rutten B, Esposito M and Cleuren B 2009 Phys. Rev. B 80 235122
[15]Cleuren B, Rutten B and van den Broeck C 2012 Phys. Rev. Lett. 108 120603
[16]Shi Z C, He J Z and Xiao Y L 2015 Sci. Sin-Phys. Mech. Astron. 45 050502 (in Chinese)
[17]Li C, Zhang Y C, Wang J H and He J Z 2013 Phys. Rev. E 88 062120
[18]Entin-Wohlman O, Imry Y and Aharony A 2015 Phys. Rev. B 91 054302
[19]Mazza F, Bosisio R, Benenti G, Giovannetti V, Fazio R and Taddei F 2014 New J. Phys. 16 085001
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 110501
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 110501
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 110501
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 110501
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 110501
[6] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 110501
[7] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 110501
[8] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 110501
[9] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 110501
[10] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 110501
[11] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 110501
[12] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 110501
[13] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 110501
[14] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 110501
[15] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 110501
Viewed
Full text


Abstract