Chin. Phys. Lett.  2017, Vol. 34 Issue (11): 110301    DOI: 10.1088/0256-307X/34/11/110301
GENERAL |
Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential
Oluwatimilehin Oluwadare1**, Kayode Oyewumi2
1Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria
2Department of Physics, University of Ilorin, Kwara State, Nigeria
Cite this article:   
Oluwatimilehin Oluwadare, Kayode Oyewumi 2017 Chin. Phys. Lett. 34 110301
Download: PDF(530KB)   PDF(mobile)(523KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A bound state solution is a quantum state solution of a particle subjected to a potential such that the particle's energy is less than the potential at both negative and positive infinity. The particle's energy may also be negative as the potential approaches zero at infinity. It is characterized by the discretized eigenvalues and eigenfunctions, which contain all the necessary information regarding the quantum systems under consideration. The bound state problems need to be extended using a more precise method and approximation scheme. This study focuses on the non-relativistic bound state solutions to the generalized inverse quadratic Yukawa potential. The expression for the non-relativistic energy eigenvalues and radial eigenfunctions are derived using proper quantization rule and formula method, respectively. The results reveal that both the ground and first excited energy eigenvalues depend largely on the angular momentum numbers, screening parameters, reduced mass, and the potential depth. The energy eigenvalues, angular momentum numbers, screening parameters, reduced mass, and the potential depth or potential coupling strength determine the nature of bound state of quantum particles. The explored model is also suitable for explaining both the bound and continuum states of quantum systems.
Received: 16 August 2017      Published: 25 October 2017
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ca (Formalism)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/11/110301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Oluwatimilehin Oluwadare
Kayode Oyewumi
[1]Landau L D and Lifshitz E M 1977 Quantum Mechanics, Non-Relativistic Theory (New York: Pergamon) 3rd edn p 504
[2]Flügge S 1994 Practical Quantum Mechanics (Berlin: Springer) p 40
[3]Merzbacher E 1998 Quantum Mechanics (New York: John Wiley and Sons) 3rd edn p 1
[4]Griffiths D J 2004 Introduction to Quantum Mechanics (New Jersey: Prentice-Hall) 2nd edn p 352
[5]Berkdemir C and Han J 2005 Chem. Phys. Lett. 409 203
[6]Chen C Y, Lu F L and Sun D S 2007 Phys. Scr. 76 428
[7]Chen C Y, Liu C L and Lu F L 2010 Phys. Lett. A 374 1346
[8]Oyewumi K J and Sen K D 2012 J. Math. Chem. 50 1039
[9]Oyewumi K J, Oluwadare O J, Sen K D and Babalola O A 2013 J. Math. Chem. 51 976
[10]Oyewumi K J, Falaye B J, Onate C A, Oluwadare O J and Yahya W A 2014 Mol. Phys. 112 127
[11]Hamzavi M, Movahedi M, Thylwe K E and Rajabi A A 2012 Chin. Phys. Lett. 29 080302
[12]Ikhdair S M and Sever R 2009 Ann. Phys. 18 747
[13]Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137
[14]Ma Z Q, Cisneros A G, Xu B W and Dong S H 2007 Phys. Lett. A 371 180
[15]Falaye B J 2012 Few-Body Syst. 53 557
[16]Onate C A, Oyewumi K J and Falaye B J 2014 Few-Body Syst. 55 61
[17]Dong S H 2007 Factorization Method in Quantum Mechanics, Fundamental Theories in Physics (Netherlands: Springer) 150 35
[18]Sever R, Bucurgat M, Tezcan C M and Yeşiltas Ö 2008 J. Math. Chem. 43 749
[19]Sever R, Tezcan C, Aktas M and Yeşiltas Ö 2008 J. Math. Chem. 43 845
[20]Dong S, Garcia-Ravelo J and Dong S H 2007 Phys. Scr. 76 393
[21]Oyewumi K J and Oluwadare O J 2016 Eur. Phys. J. Plus 131 295
[22]Oluwadare O J, Thylwe K E and Oyewumi K J 2016 Commun. Theor. Phys. 65 434
[23]Oluwadare O J, Oyewumi K J, Thylwe K E and Hassanabadi S 2017 Commun. Theor. Phys. 68 412
[24]Child M S, Don S H and Wang X G 2000 J. Phys. A 33 5653
[25]Ma Z Q and Xu B W 2005 Int. J. Mod. Phys. E 14 599
[26]Ma Z Q and Xu B W 2005 Europhys. Lett. 69 685
[27]Dong S H, Morales D and Garcia-Ravelo J 2007 Int. J. Mod. Phys. E 16 189
[28]Qiang W C and Dong S H 2007 Phys. Lett. A 363 169
[29]Gu X Y, Dong S H and Ma Z Q 2009 J. Phys. A 42 035303
[30]Dong S H and Irisson M C 2012 J. Math. Chem. 50 881
[31]Serrano F A, Gu X Y and Dong S H 2010 J. Math. Phys. 51 082103
[32]Serrano F A, Irisson M C and Dong S H 2011 Ann. Phys. 523 771
[33]Yang C N 1982 Monopoles in Quantum Field Theory, Proceedings of the Monopole (Singapore: World Scientific) p 237
[34]Qiang W C and Dong S H 2010 Europhys. Lett. 89 10003
[35]Gu, X Y and Dong S H 2011 J. Math. Chem. 49 2053
[36]Falaye B J, Ikhdair S M and Hamzavi M 2015 Few-Body Syst. 56 63
[37]Ikhdair S M, Hamzavi M and Falaye B J 2013 Appl. Math. Comput. 225 775
[38]Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[39]Dong S H and Gu X Y 2008 J. Phys.: Conf. Ser. 96 012109
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 110301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 110301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 110301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 110301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 110301
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 110301
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 110301
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110301
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 110301
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 110301
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 110301
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 110301
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 110301
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 110301
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 110301
Viewed
Full text


Abstract