Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 107101    DOI: 10.1088/0256-307X/34/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
First-Principles Calculation for the Half Metallic Properties of La$_{2}$NbMnO$_{6}$
Ning-Ning Zu**, Rui Li, Ya-Hui Zheng, Lin Chen
Department of Physics, College of Science, Qiqihar University, Qiqihar 161006
Cite this article:   
Ning-Ning Zu, Rui Li, Ya-Hui Zheng et al  2017 Chin. Phys. Lett. 34 107101
Download: PDF(684KB)   PDF(mobile)(670KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract La$_{2}$VMnO$_{6}$ is measured to be insulating and ferrimagnetic experimentally. In this study, by substituting V with Nb, La$_{2}$NbMnO$_{6}$ is investigated using the density functional theory. The calculated results indicate that La$_{2}$NbMnO$_{6}$ is also ferrimagnetic and exhibits the half metallic properties due to the strong electron correlation of Mn. The valence states of Nb and Mn are assigned to be +4 and +2 in La$_{2}$NbMnO$_{6}$, respectively, which are different from V$^{3+}$/Mn$^{3+}$ in La$_{2}$VMnO$_{6}$.
Received: 11 April 2017      Published: 27 September 2017
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Be (Transition metals and alloys)  
  72.25.Ba (Spin polarized transport in metals)  
Fund: Supported by the Scientific Research Plan Projects of Heilongjiang Education Department under Grant No 135109311, the National Natural Science Foundation of China under Grant Nos 11404180 and 11405092, and the Natural Science Foundation of Heilongjiang Province under Grant Nos A2015010 and B201420.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/107101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ning-Ning Zu
Rui Li
Ya-Hui Zheng
Lin Chen
[1]de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[2]Lee W K and Pickett W E 2008 Phys. Rev. B 77 115101
[3]Pickett W E 1998 Phys. Rev. B 57 10613
[4]Park J H, Kwon S K and Min B I 2002 Phys. Rev. B 65 174401
[5]Park M S and Min B I 2005 Phys. Rev. B 71 052405
[6]Wang Y K and Guo G Y 2006 Phys. Rev. B 73 064424
[7]Pardo V and Pickett W E 2009 Phys. Rev. B 80 054415
[8]Chen S H, Xiao Z R, Liu Y P and Wang Y K 2010 J. Appl. Phys. 108 093908
[9]Sanyal P, Halder A, Si L, Wallerberger M, Held K and Saha-Dasgupta T 2016 Phys. Rev. B 94 035132
[10]Androulakis J, Katsarakis N and Giapintzakis J 2002 Solid State Commun. 124 77
[11]Chakraverty S, Yoshimatsu K, Kozuka Y, Kumigashira H, Oshima M, Makino T, Ohtomo A and Kawasaki M 2011 Phys. Rev. B 84 132411
[12]Ohtomo A, Chakraverty S, Mashiko H, Oshima T and Kawasaki M 2013 J. Mater. Res. 28 689
[13]Zu N N, Wang J and Wu Z J 2013 J. Phys. Chem. C 117 7231
[14]Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[15]Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[16]Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[17]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[18]Blöchl P E 1994 Phys. Rev. B 50 17953
[19]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20]Schwarz K and Blaha P 2003 Comput. Mater. Sci. 28 259
[21]Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2001 WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna: Technical University Wien)
[22]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23]Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[24]Kunes J, Novak P, Divis M and Oppeneer P M 2001 Phys. Rev. B 63 205111
[25]Lv S H, Liu X J, Li H P, Han L, Wang Z C and Meng J 2012 J. Comput. Chem. 33 1433
[26]Wang J P, Song W Y and Wu Z J 2010 Phys. Status Solidi B 247 194
[27]Jin S H and Lee W K 2011 Phys. Rev. B 84 172405
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 107101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 107101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 107101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 107101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 107101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 107101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 107101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 107101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 107101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 107101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 107101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 107101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 107101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 107101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107101
Viewed
Full text


Abstract