CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa |
Lun Xiong1,2,3**, Li-Gang Bai3, Xiao-Dong Li3, Jing Liu3 |
1School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000 2Dazhou Industrial Technology Institute of Intelligent Manufacturing, Dazhou 635000 3Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Lun Xiong, Li-Gang Bai, Xiao-Dong Li et al 2017 Chin. Phys. Lett. 34 106101 |
|
|
Abstract We study the strength and texture of tantalum (Ta) under uniaxial compression up to 80 GPa using an angle-dispersive radial x-ray diffraction technique together with the lattice strain theory in a diamond anvil cell at ambient temperature. The ratio of differential stress to shear modulus ($t/G$) is found to remain constant above $\sim$60 GPa, indicating that the Ta starts to experience macro yield with plastic deformation at this pressure. Combined with independent constraints on the high-pressure shear modulus, we find that the Ta sample could support a differential stress of $\sim$4.67 GPa when it starts to yield with plastic deformation at $\sim$60 GPa under uniaxial compression. The differential stress in Ta ranges from 0.216 GPa to 4.67 GPa with pressure increasing from 1 GPa to 60 GPa and can be expressed as $t=0.199(33)+0.075(1)P$, where $P$ is the pressure in GPa. A maximum differential stress as high as $\sim$5.37 GPa can be supported by Ta at the high pressure of $\sim$80 GPa. In addition, we investigate the texture of Ta under nonhydrostatic compression to 80 GPa using the software package material analysis using diffraction. It is proven that the plastic deformation due to stress under high pressures is responsible for the development of texture.
|
|
Received: 21 June 2017
Published: 27 September 2017
|
|
PACS: |
61.05.cp
|
(X-ray diffraction)
|
|
62.20.F-
|
(Deformation and plasticity)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
64.30.Ef
|
(Equations of state of pure metals and alloys)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 10875142 and 11079040, and the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N03 and KJCX2-SW-N20. |
|
|
[1] | Featherston F H and Neighbours J R 1963 Phys. Rev. 130 1324 | [2] | Soga N 1966 J. Appl. Phys. 37 3416 | [3] | Leisure R G, Hsu D K and Seiber B A 1973 J. Appl. Phys. 44 3394 | [4] | Katahara K W, Manghnani M H and Fisher E S 1976 J. Appl. Phys. 47 434 | [5] | Sarrao J L, Chen S R, Visscher W M, Lei M, Kocks U F and Migliori A 1994 Rev. Sci. Instrum. 65 2139 | [6] | Wang Y, Ahuja R and Johansson B 2002 J. Appl. Phys. 92 6616 | [7] | Tang L Y, Liu L, Liu J, Xiao W S, Li Y C, Li X D and Bi Y 2010 Chin. Phys. Lett. 27 016402 | [8] | Errandonea D, Somayazulu M, Hausermann D and Mao H K 2003 J. Phys.: Condens. Matter 15 7635 | [9] | Guinan M W and Steinberg D J 1974 J. Phys. Chem. Solids 35 1501 | [10] | Cynn H and Yoo C S 1999 Phys. Rev. B 59 8526 | [11] | Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 69 092106 | [12] | Dewaele A and Loubeyre P 2005 Phys. Rev. B 72 134106 | [13] | Asay J R, Ao T, Vogler T J, Davis J P and Gray III G T 2009 J. Appl. Phys. 106 073515 | [14] | Singh A K 1993 J. Appl. Phys. 73 4278 | [15] | Singh A K and Balasingh C 1994 J. Appl. Phys. 75 4956 | [16] | Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673 | [17] | Xiong L, Liu J, Bai L G, Li Y C, Lin C L, He D W, Peng F and Lin J F 2013 J. Appl. Phys. 113 033507 | [18] | Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235 | [19] | Duffy T S, Elert M, Furnish M D, Chau R, Holmes N and Nguyen J 2007 AIP Conference Proceedings 135 639 | [20] | Merkel S, Wenk H R, Shu J F, Shen G Y, Gillet P, Mao H K and Hemley R J 2002 J. Geophys. Res. 107 ECV 3-1 | [21] | Kiefer B, Shieh S R, Duffy T S and Sekine T 2005 Phys. Rev. B 72 014102 | [22] | Singh A K, Jain A, Liermann H P and Saxena S K 2006 J. Phys. Chem. Solids 67 2197 | [23] | Katahara K W, Manghnani M H and Fisher E S 1979 J. Phys. F 9 773 | [24] | He D W and Duffy T S 2006 Phys. Rev. B 73 134106 | [25] | Duffy T S, Shen G Y, Shu J F, Mao H K, Hemley R J and Singh A K 1999 J. Appl. Phys. 86 6729 | [26] | Duffy T S, Shen G Y, Heinz D L, Shu J F, Ma Y Z, Mao H K, Hemley R J and Singh A K 1999 Phys. Rev. B 60 15063 | [27] | Singh A K and Liermann H P 2011 J. Appl. Phys. 109 113539 | [28] | Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276 | [29] | Akobuije A D, Nellis W J and Silvera I F 2005 J. Appl. Phys. 98 073526 | [30] | Jeanloz R and Godwal B K 2012 J. Phys.: Conf. Ser. 377 012032 | [31] | Hu J B, Dai C D, Yu Y Y, Liu Z J, Tan Y, Zhou X M, Tan H, Cai L C and Wu Q 2012 J. Appl. Phys. 111 033511 | [32] | Burakovsky L, Chen S P, Preston D L, Belonoshko A B, Rosengren A, Mikhaylushkin A S, Simak S I and Moriarty J A 2010 Phys. Rev. Lett. 104 255702 | [33] | Hsiung L M and Lassila D H 2000 Acta Mater. 48 4851 | [34] | Lutterotti L, Matthies S and Wenk H R 1999 Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12) 1 1599 | [35] | Lutterotti L, Matthies S and Wenk H R 1999 MAUD: a friendly Java program for material analysis using diffraction p 14 | [36] | Rollett A D and Texture S I 2000 Anisotropy Preferred Orientations in Polyscrystals, Their Effect on Materials Properties 2nd edn (Cambridge: Cambridge University Press) chapter 5 p 178 | [37] | Chen B, Lutker K, Raju S V, Yan J Y, Kanitpanyacharoen W, Lei J L, Yang S Z, Wenk H R, Mao H K and Williams 2012 Science 338 1448 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|