Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 100201    DOI: 10.1088/0256-307X/34/10/100201
GENERAL |
Alice–Bob Peakon Systems
Sen-Yue Lou1,2, Zhi-Jun Qiao3**
1Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo 315211
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
3School of Mathematical and Statistical Science, University of Texas, TX 78539, USA
Cite this article:   
Sen-Yue Lou, Zhi-Jun Qiao 2017 Chin. Phys. Lett. 34 100201
Download: PDF(1056KB)   PDF(mobile)(1054KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the Alice–Bob peakon system generated from an integrable peakon system using the strategy of the so-called Alice–Bob non-local KdV approach [Scientific Reports 7 (2017) 869]. Nonlocal integrable peakon equations are obtained and shown to have peakon solutions.
Received: 26 June 2017      Published: 27 September 2017
PACS:  02.30.Ik (Integrable systems)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.Yv (Solitons)  
Fund: Supported by the Global Change Research Program of China under Grant No 2015CB953904, the National Natural Science Foundation of China under Grant No 11435005, the Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No ZF1213, the K. C. Wong Magna Fund at Ningbo University, the UTRGV President's Endowed Professorship, and the Seed Grant of the UTRGV College of Science.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/100201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/100201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sen-Yue Lou
Zhi-Jun Qiao
[1]Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[2]Lou S Y and Huang F 2017 Sci. Rep. 7 869
[3]Lou S Y 2016 arXiv:1603.03975v2
[4]Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[5]Song C Q, Xiao D M and Zhu Z N 2017 Commun. Nonlinear Sci. Numer. Simul. 45 13
[6]Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915
[7]Ji J L and Zhu Z N 2017 J. Math. Anal. Appl. 453 973
[8]Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
[9]Dimakos M and Fokas A S 2013 J. Math. Phys. 54 081504
[10]Fokas A S 2006 Phys. Rev. Lett. 96 190201
[11]Fokas A S 2016 Nonlinearity 29 319
[12]Xia B Q, Qiao Z J and Zhou R G 2015 Stud. Appl. Math. 135 248
[13]Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[14]Degasperis A and Procesi M 1999 Symmetry Perturbation Theory (Singapore: World Scientific) p 23
[15]Holm D D and Staley M F 2003 Phys. Lett. A 308 437
[16]Novikov V S 2009 J. Phys. A 42 342002
[17]Fokas A S 1995 Physica D 87 145
[18]Olver P and Rosenau P 1996 Phys. Rev. E 53 1900
[19]Qiao Z J 2006 J. Math. Phys. 47 112701
Qiao Z J 2007 J. Math. Phys. 48 082701
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 100201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 100201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 100201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 100201
Viewed
Full text


Abstract