CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions |
Yin Tang1, Qing Cai1, Lian-Hong Yang2, Ke-Xiu Dong3, Dun-Jun Chen1**, Hai Lu1, Rong Zhang1, You-Dou Zheng1 |
1Key Laboratory of Advanced Photonic and Electronic Materials, School of electronic Science and Engineering, Nanjing University, Nanjing 210093 2Department of Physics, Changji College, Changji 831100 3School of Mechanical and Electronic Engineering, Chuzhou University, Chuzhou 239000
|
|
Cite this article: |
Yin Tang, Qing Cai, Lian-Hong Yang et al 2017 Chin. Phys. Lett. 34 018502 |
|
|
Abstract It is well known that III-nitride semiconductors can generate the magnitude of MV/cm polarization electric field which is comparable with their ionization electric fields. To take full advantage of the polarization electric field, we design an N-face AlGaN solar-blind avalanche photodiode (APD) with an Al$_{0.45}$Ga$_{0.55}$N/Al$_{0.3}$Ga$_{0.7}$N heterostructure as separate absorption and multiplication (SAM) regions. The simulation results show that the N-face APDs are more beneficial to improving the avalanche gain and reducing the avalanche breakdown voltage compared with the Ga-face APDs due to the effect of the polarization electric field. Furthermore, the Al$_{0.45}$Ga$_{0.55}$N/Al$_{0.3}$Ga$_{0.7}$N heterostructure SAM regions used in APDs instead of homogeneous Al$_{0.45}$Ga$_{0.55}$N SAM structure can increase significantly avalanche gain because of the increased hole ionization coefficient by using the relatively low Al-content AlGaN in the multiplication region. Meanwhile, a quarter-wave AlGaN/AlN distributed Bragg reflector structure at the bottom of the device is designed to remain a solar-blind characteristic of the heterostructure SAM-APDs.
|
|
Received: 17 September 2016
Published: 29 December 2016
|
|
PACS: |
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
|
Fund: Supported by the State Key Project of Research and Development Plan of China under Grant No 2016YFB0400903, the National Natural Science Foundation of China under Grant Nos 61634002, 61274075 and 61474060, the Key Project of Jiangsu Province under Grant No BE2016174, the Anhui University Natural Science Research Project under Grant No KJ2015A153, and the Open Fund of State KeyLab of Optical Technologies on Nano-fabrication and Micro-engineering. |
|
|
[1] | Yoo D, Limb J, Ryou J, Zhang Y, Shen S, Dupuis R, Hanser D, Preble E and Evans K 2007 IEEE Photon. Technol. Lett. 19 1313 | [2] | Huang Y, Chen D J, Lu H, Dong K X, Zhang R, Zheng Y D, Li L and Li Z H 2012 Appl. Phys. Lett. 101 253516 | [3] | Wang X D, Hu W D, Pan M, Hou L W, Xie W, Xu J T, Li X Y, Chen X S and Lu W 2014 J. Appl. Phys. 115 013103 | [4] | Shao Z G, Chen D J, Lu H, Zhang R, Cao D P, Luo W J, Zheng Y D, Li L and Li Z H 2014 IEEE Electron Device Lett. 35 3 | [5] | Bulmer J, Suvarna P, Leathersich J, Marini J, Mahaboob I, Newman N and Shadi F 2016 IEEE Photon. Technol. Lett. 28 1 | [6] | Carrano J C, Lambert D J H, Eiting C J, Collins C J, Li T, Wang S, Yang B, Beck A L, Dupuis R D and Campbell J C 2000 Appl. Phys. Lett. 76 7 | [7] | Choi S, Kim H, Zhang Y, Bai X, Yoo D, Limb J, Ryou J, Shen S, Yoder P D and Dupuis D 2009 IEEE Photon. Technol. Lett. 21 1526 | [8] | Mcclintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123 | [9] | Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506 | [10] | Huang Z Q, Li J F, Zhang W L and Jiang H 2013 Appl. Phys. Express 6 054101 | [11] | Sun L, Chen J L, Li J F and Jiang H 2010 Appl. Phys. Lett. 97 191103 | [12] | Yang B, Li T, Heng K, Collins C, Wang S, Carrano J C, Dpuis R D, Campbell J C, Schurman M J and Ferguson I T 2000 IEEE J. Quantum Electron. 36 12 | [13] | Zhang S K, Wang W B, Dabiran A M, Osinsky A, Wowchak A M, Hertog B, Plaut C, Chow P P, Gundry S, Troudt E O and Alfano R R 2005 Appl. Phys. Lett. 87 262113 | [14] | Bertazzi F, Moresco M and Bellotti E 2009 J. Appl. Phys. 106 063718 | [15] | Dong K X, Chen D J, Lu H, Liu B, Han P, Zhang R and Zheng Y D 2013 IEEE Photon. Technol. Lett. 25 1510 | [16] | Bellotti E, Bertazzi F, Shishehchi S, Matsubara M and Goano M 2013 IEEE Trans. Electron Devices 60 3204 | [17] | Wang X D, Hu W D, Chen X S, Xu J T, Wang L, Li X Y and Lu W 2011 J. Phys. D 44 405102 | [18] | Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 1 | [19] | Wu L L, Zhao D G, Deng Y, Jiang D S, Zhu J J, Wang H, Liu Z S, Zhang S M, Zhang B S and Yang H 2012 Sci. Chin. Phys. Mech. Astron. 55 619 | [20] | Bulmer J, Suvarna P, Leathersich J, Marini J, Mahaboob I, Newman N and Shahedipour-Sandvik F 2016 IEEE Photon. Technol. Lett. 28 1 | [21] | Verghese S, McIntosh K A, Molnar R J, Mahoney L J, Aggarwal R L, Geis M W, Molvar K M, Duerr E K and Melngailis I 2001 IEEE Trans. Electron Devices 48 3 | [22] | Brunner D, Angerer H, Bustarret E, Freudenberg F, Hopler R, Dimitrov R, Ambacher O and Stutzmann M 1997 J. Appl. Phys. 82 5090 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|