Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 018101    DOI: 10.1088/0256-307X/34/1/018101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu**
Nano-Optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu et al  2017 Chin. Phys. Lett. 34 018101
Download: PDF(722KB)   PDF(mobile)(715KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the molecular beam epitaxy growth of GaSb films on GaAs substrates using compositionally graded GaAs$_{x}$Sb$_{1-x}$ buffer layers. Optimization of GaAs$_{x}$Sb$_{1-x}$ growth parameter is aimed at obtaining high GaSb crystal quality and smooth GaSb surface. The optimized growth temperature and thickness of GaAs$_{x}$Sb$_{1-x}$ layers are found to be 420$^\circ\!$C and 0.5 μm, respectively. The smallest full width at half maximum value and the root mean square surface roughness of 0.67 nm over $2\times2$ μm$^{2}$ area are achieved as a 250 nm GaSb film is grown under optimized conditions.
Received: 11 August 2016      Published: 29 December 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.Pq (Growth in vacuum)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2015CB351902, 2015CB932402 and 2012CB619203, the National Natural Science Foundation of China under Grant Nos 61177070, 11374295 and U1431231, and the National Key Research Program of China under Grant No 2011ZX01015-001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/018101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/018101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai-Long Yu
Hao-Yue Wu
Hai-Jun Zhu
Guo-Feng Song
Yun Xu
[1]Chow D H, Miles R H, Soderstrom J R et al 1990 Appl. Phys. Lett. 56 1418
[2]Chang C P, Chen J, Fernandez J M et al 1992 Appl. Phys. Lett. 60 1129
[3]Watkins S P, Ares R, Soerensen G et al 1997 J. Cryst. Growth 170 788
[4]Zhang X B, Ryou J H, Dupuis R D et al 2006 Appl. Phys. Lett. 88 072104
[5]Mohseni H, Tahraoui A, Wojkowski J S, Razeghi M, Mitchel W and Saxler A 2000 Proc. SPIE 3948 145
[6]Morosini M B, Gerrera-Perez J L, Loural M S et al 1993 IEEE J. Quantum Electron. 29 2103
[7]Staveteig P T, Choi Y H, Labeyrie G et al 1994 Appl. Phys. Lett. 64 460
[8]Brar B and Leonard D 1995 Appl. Phys. Lett. 66 463
[9]Brown S J, Grimshaw M P, Ritchie D A et al 1996 Appl. Phys. Lett. 69 1468
[10]Akahane K, Yamamoto N, Gozu S et al 2004 J. Cryst. Growth 264 21
[11]Muller K L, Heitz R, Schliwa Aa et al 2001 Appl. Phys. Lett. 78 1418
[12]Muller K L, Heitz R and Pohl U W 2001 Appl. Phys. Lett. 79 1027
[13]Chang J C P, Chen J, Fernandez J M, Wieder H H and Kavanagh K L 1992 Appl. Phys. Lett. 60 1129
[14]Jayavel P, Nakamura S, Koyama T and Hayakawa Y 2006 Phys. Status Solidi C 3 2685
[15]Xin Y C, Vaughn L G, Dawson L R, Stintz A, Lin Y, Lester L F and Huffaker D L 2003 J. Appl. Phys. 94 2133
[16]Qian W, Skowronski M and Kaspi R 1997 J. Electrochem. Soc. 144 1430
[17]Chow D H, Miles R H, Soderstrom J R and McGill T C 1990 Appl. Phys. Lett. 56 1418
[18]Zhang X B, Ryou J H, Dupuis R D, Petschke A, Mou S, Chuang S L, Xu C and Hsieh K C 2006 Appl. Phys. Lett. 88 072104
[19]Lee W, Kim S, Choi S, Lee H, Lee S, Park S, Yao T, Song J, Ko H and Chang J 2007 J. Cryst. Growth 305 40
[20]Kanisawa K, Yamaguchi H and Hirayama Y 2000 Appl. Phys. Lett. 76 589
[21]Nishimura T, Kadoiwa K, Hayafuji N, Miyashita M, Mitsui K, Kumabe H and Murotani T 1991 J. Cryst. Growth 107 468
[22]Takano Y, Sasaki T, Nagaki Y, Kuwahara K et al 1996 J. Cryst. Growth 169 621
[23]Wen L, Gao F L, Zhang X N, Zhang S G et al 2014 J. Appl. Phys. 116 193508
[24]Gao F L, Wen L, Zhang S G, Li J L, Zhang X N et al 2015 Thin Solid Films 597 25
[25]Zhou Z Q, Xu Y Q, Hao R T, Tang B, Ren Z W and Niu Z C 2009 Chin. Phys. Lett. 26 018101
[26]Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X et al 2015 Chin. Phys. Lett. 32 106801
[27]Watkins S P, Ares R, Soerensen G, Zhong W, Tran C A et al 1997 J. Cryst. Growth 170 788
[28]Kim H S, Noh Y K, Kim M D, Kwon Y J, Oh J E et al 2007 J. Cryst. Growth 301 230
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 018101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 018101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 018101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 018101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 018101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 018101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 018101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 018101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 018101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 018101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 018101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 018101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 018101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 018101
[15] Yang Ren, Rui-Ting Hao, Si-Jia Liu, Jie Guo, Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu. High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 018101
Viewed
Full text


Abstract