Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 017302    DOI: 10.1088/0256-307X/34/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Band Gap Adjustment of SiC Honeycomb Structure through Hydrogenation and Fluorination
Yu-Feng An1, Zhen-Hong Dai1**, Yin-Chang Zhao1, Chao Lian2, Zhao-Qing Liu3
1Computational Physics Laboratory, Institute of Opto-electronic Information Science and Technology, Yantai University, Yantai 264005
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3National Natural Science Foundation of China, Beijing 100085
Cite this article:   
Yu-Feng An, Zhen-Hong Dai, Yin-Chang Zhao et al  2017 Chin. Phys. Lett. 34 017302
Download: PDF(895KB)   PDF(mobile)(891KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Previous calculations show that the two-dimensional (2D) silicon carbide (SiC) honeycomb structure is a structurally stable monolayer. Following this, we investigate the electronic properties of the hydrogen and fluorine functionalized SiC monolayer by first-principles calculations. Our results show that the functionalized monolayer becomes metallic after semi-hydrogenation or semi-fluorination, while the semiconducting properties are obtained by the full functionalization. Compared with the bare SiC monolayer, the band gap of the fully hydrogenated system is increased, in comparison with the decrease of the gap in the fully fluorinated case. As a result, the band gap can be tuned from 0.73 to 4.14 eV by the functionalization. In addition to the metal–semiconductor transition, hydrogenation and functionalization also realize a direct-indirect semiconducting transition in the 2D SiC monolayer. These results provide theoretical guidance for design of photoelectric devices based on the SiC monolayer.
Received: 22 October 2016      Published: 29 December 2016
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
Fund: Supported by the Program for New Century Excellent Talents in Universities of China under Grant No NCET-09-0867.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/017302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/017302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Feng An
Zhen-Hong Dai
Yin-Chang Zhao
Chao Lian
Zhao-Qing Liu
[1]Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[2]Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[3]Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5]Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 107306
[6]Bekarglu E, Topsakal M, Cahangirov S and Ciraci S 2010 Phys. Rev. B 81 075433
[7]Chen X and Ni Y 2013 Phys. Rev. B 88 115430
[8]Padilha J E, Peelaers H, Janotti A and Vande Walle C G 2014 Phys. Rev. B 90 205420
[9]Zhang L Z, Wang Z F, Du S X, Gao H J and Liu F 2014 Phys. Rev. B 90 161402
[10]Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
[11]Gong K, Zhang L, Ji W and Guo H 2014 Phys. Rev. B 90 125441
[12]Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[13]Zhang S, Zhou J, Wang Q et al 2015 Proc. Natl. Acad. Sci. USA 112 2372
[14]Li X, Zhang S, Wang F Q et al 2016 Phys. Chem. Chem. Phys. 18 14191
[15]Zhao T, Zhang S, Guo Y et al 2016 Nanoscale 8 233
[16]Guo Y, Zhang S, Zhao T et al 2016 Nanoscale 8 10598
[17]Guo Y, Wang Q, Kawazoe Y et al 2015 Sci. Rep. 5 14342
[18]Mckay H, Wales David J, Jenkins S J, Verges J A and de Abdres P L 2010 Phys. Rev. B 81 075425
[19]Xu L, Dai Z H, Wang S et al 2014 Acta Phys. Sin. 63 107102 (in Chinese)
[20]Bhattacharya A, Bhattacharya S and Das G P 2010 Phys. Rev. B 82 035415
[21]Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[22]Cui C, Li J and Zhong J X 2008 Phys. Rev. B 78 075435
[23]Zhong X L, Yap Y K and Pandey R 2011 Phys. Rev. B 83 193403
[24]Kan M, Zhou J, Wang Q, Sun Q and Jena P 2011 Phys. Rev. B 84 205412
[25]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26]Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[27]Perdew J P, Burdew K, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28]Bhattacharya A, Bhattacharya S, Majumder C et al 2011 Phys. Rev. B 83 033404
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 017302
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 017302
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 017302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 017302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 017302
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 017302
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 017302
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 017302
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 017302
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 017302
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 017302
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 017302
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 017302
Viewed
Full text


Abstract