Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 016103    DOI: 10.1088/0256-307X/34/1/016103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Total-Ionizing-Dose-Induced Body Current Lowering in the 130nm PDSOI I/O NMOSFETs
Xiao-Nian Liu1,2**, Li-Hua Dai1,2, Bing-Xu Ning1, Shi-Chang Zou1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Xiao-Nian Liu, Li-Hua Dai, Bing-Xu Ning et al  2017 Chin. Phys. Lett. 34 016103
Download: PDF(603KB)   PDF(mobile)(604KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The body current lowering effect of 130 nm partially depleted silicon-on-insulator (PDSOI) input/output (I/O) n-type metal-oxide-semiconductor field-effect transistors (NMOSFETs) induced by total-ionizing dose is observed and analyzed. The decay tendency of current ratio of body current and drain current $I_{\rm b}/I_{\rm d}$ is also investigated. Theoretical analysis and TCAD simulation results indicate that the physical mechanism of body current lowering effect is the reduction of maximum lateral electric field of the pinch-off region induced by the trapped charges in the buried oxide layer (BOX). The positive charges in the BOX layer can counteract the maximum lateral electric field to some extent.
Received: 29 August 2016      Published: 29 December 2016
PACS:  61.80.Az (Theory and models of radiation effects)  
  61.80.Ed (γ-ray effects)  
  61.82.Fk (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/016103       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/016103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Nian Liu
Li-Hua Dai
Bing-Xu Ning
Shi-Chang Zou
[1]Ma Z J, Wann H J, Chan M et al 1994 IEEE Reliability Physics Symposium p 52
[2]Huang H X, Bi D W, Peng C et al 2013 Chin. Phys. Lett. 30 080701
[3]Huang J Q, He W W, Chen J et al 2016 Chin. Phys. Lett. 33 096101
[4]Schwank J 2002 IEEE NSREC Short Course p 123
[5]Shaneyfelt M R et al 1998 IEEE Trans. Nucl. Sci. 45 2584
[6]Zebrev G I and Gorbunov M S 2009 IEEE Trans. Nucl. Sci. 56 2230
[7]Hu C M 1983 IEEE Int. Electron Devices Meet. Tech. Dig. 83 176
[8]Peng C, Hu Z Y, Ning B X et al 2014 IEEE Electron Device Lett. 35 503
[9]Slotboom J W, Streutker G et al 1987 IEEE Int. Electron Devices Meet. Tech. Dig. 87 494
[10]Chan T Y, Ko P K and Hu C M 1984 IEEE Electron Device Lett. 5 505
[11]Chan T Y, Ko P K and Hu C M 1985 IEEE Electron Device Lett. 6 551
[12]Wann H J, King J, Chen J, Ko P K, Hu C M 1993 IEEE SOI Conf. p 118
Related articles from Frontiers Journals
[1] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 016103
[2] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 016103
[3] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 016103
[4] MAO Fei, ZHANG Chao, ZHANG Yan-Wen, ZHANG Feng-Shou. Collision Energy Dependence of Defect Formation in Graphene[J]. Chin. Phys. Lett., 2012, 29(7): 016103
[5] LIU Ti-Jiang, WANG Yue-Xia**, PAN Zheng-Ying, JIANG Xiao-Mei, ZHOU-Liang, ZHU Jing. Atomistic Simulation of He Clustering and Defects Produced in Ni[J]. Chin. Phys. Lett., 2006, 23(5): 016103
[6] RUAN Yong-Feng, Hiroshi NAKAO, Takatomo SASAKI. BO2-F+ Centers in the Radiation-damaged YCOB Crystals[J]. Chin. Phys. Lett., 2000, 17(12): 016103
Viewed
Full text


Abstract