Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 010201    DOI: 10.1088/0256-307X/34/1/010201
GENERAL |
Painlevé Integrability, Consistent Riccati Expansion Solvability and Interaction Solution for the Coupled mKdV-BLMP System
Jun-Chao Chen**, Zheng-Yi Ma, Ya-Hong Hu
Department of Mathematics, Lishui University, Lishui 323000
Cite this article:   
Jun-Chao Chen, Zheng-Yi Ma, Ya-Hong Hu 2017 Chin. Phys. Lett. 34 010201
Download: PDF(325KB)   PDF(mobile)(318KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The integrability of the coupled, modified KdV equation and the potential Boiti–Leon–Manna–Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.
Received: 21 October 2016      Published: 29 December 2016
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Supported by the Natural Science Foundation of Zhejiang Province of China under Grant No LY14A010005.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/010201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun-Chao Chen
Zheng-Yi Ma
Ya-Hong Hu
[1]Ablowitz M J, Ramani A and Segur H 1978 Lett. Nuovo Cimento 23 333
[2]Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[3]Jimbo M, Kruskal M D and Miwa T 1982 Phys. Lett. A 92 59
[4]Conte R 1989 Phys. Lett. A 140 383
[5]Lou S Y, Hu X R and Chen Y 2012 J. Phys. A 45 155209
[6]Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[7]Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298
[8]Chen J C, X P Xin X P and Chen Y 2014 J. Math. Phys. 55 053508
[9]Chen J C and Chen Y 2014 J. Nonlinear Math. Phys. 21 454
[10]Cheng X P, Lou S Y, Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
[11]Xin X P, Chen J C and Chen Y 2014 Chin. Ann. Math. 35 841
[12]Ma Z Y, Fei J X and Chen Y M 2014 Appl. Math. Lett. 37 54
[13]Lou S Y 2015 Stud. Appl. Math. 134 372
[14]Chen C L and Lou S Y 2013 Chin. Phys. Lett. 30 110202
[15]Chen C L and Lou S Y 2014 Commun. Theor. Phys. 61 545
[16]Lou S Y, Cheng X P and Tang X Y 2014 Chin. Phys. Lett. 31 070201
[17]Yu W F, Lou S Y, Yu J and Hu H W 2014 Chin. Phys. Lett. 31 070203
[18]Wang Y H 2014 Appl. Math. Lett. 38 100
[19]Hu X R and Chen Y 2015 Chin. Phys. B 24 090203
[20]Liu X Z, Ren B and Yu J 2015 Chin. Phys. B 24 080202
[21]Hu X R and Chen Y 2015 Chin. Phys. B 24 030201
[22]Wang J Y, Liang Z F and Tang X Y 2014 Phys. Scr. 89 025201
[23]Boiti M, Leon J J P, Manna M and Pempinelli F 1986 Inverse Probl. 2 271
[24]Wazwaz A M 2016 Appl. Math. Lett. 58 1
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 010201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 010201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 010201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 010201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 010201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 010201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 010201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 010201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 010201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 010201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 010201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 010201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 010201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 010201
Viewed
Full text


Abstract