GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
The Pulsation Induced by Mass Transfer in Critically Rotating Stars |
Jiang-Tao Wang1, Han-Feng Song1,2,3** |
1College of Science, Guizhou University, Guiyang 550025 2Geneva Observatory, University of Geneva, Sauverny CH-1290, Switzerland 3Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011
|
|
Cite this article: |
Jiang-Tao Wang, Han-Feng Song 2016 Chin. Phys. Lett. 33 099702 |
|
|
Abstract The structural characteristics of the critically rotating accretor in binaries are investigated during rapid mass transfer. It is found that the accretor is subjected to periodic pulsation due to accretions and rejections of mass and angular momentum. The gainer attempts to attain both hydrostatic and thermal balances. This physical process can cause the thermal structure of the accreting star to fluctuate with a period of $\sim0.19$ y. Stellar wind can be enhanced by a factor of $\sim $$1.25$$\,\times\,$$10^{4}$ when the accretor approaches break-down velocity. Surface entropy and density decrease with the increase of the stellar radius due to the fact that rapid rotation leads to a reduction in the number density and surface temperature. The rotational energy has the same trend as stellar radius due to stellar expansion. Surface opacity which is extremely sensitive to surface temperature has an opposite trend to stellar radius. Moreover, the rate of nuclear energy must be adjusted due to mass removal or accretion at the stellar surface.
|
|
Received: 03 May 2016
Published: 30 September 2016
|
|
PACS: |
97.10.Cv
|
(Stellar structure, interiors, evolution, nucleosynthesis, ages)
|
|
97.10.Kc
|
(Stellar rotation)
|
|
97.10.Gz
|
(Accretion and accretion disks)
|
|
|
|
|
[1] | Langer N 2012 Annu. Rev. Astron. Astrophys. 50 107 | [2] | Maeder A and Meynet G 2012 Rev. Mod. Phys. 84 25 | [3] | Song H F, Wang J Z and Tai L T 2013 Acta Phys. Sin. 62 059701 (in Chinese) | [4] | Zhan Q et al 2015 Acta Phys. Sin. 64 089701 (in Chinese) | [5] | Tai L T, Song H F and Wang J T 2016 Acta Phys. Sin. 65 049701 (in Chinese) | [6] | von Zeipel H 1924 Mon. Not. R. Astron. Soc. 84 665 | [7] | Zahn J P 1992 Astron. Astrophys. 265 115 | [8] | Mathis S and Zahn J P 2004 Astron. Astrophys. 425 229 | [9] | Meynet G et al 2006 Cosmology ASP Conf. Ser. 353 49 | [10] | Meynet G et al 2010 Astron. Astrophys. 521 A30 | [11] | Zhang J, Wang B, Zhang B and Han Z W 2012 Chin. Phys. Lett. 29 019701 | [12] | Maeder A and Meynet G 2000 Astron. Astrophys. 361 159 | [13] | Kopal Z 1955 Ann. d'AstroPhys. 18 379 | [14] | Giuricin G, Mardirossian F and Mezzetti M 1983 Astrophys. J. Suppl. Ser. 52 35 | [15] | Meynet et al 2010 Revista Mex. Astronomí Ay Astrofísica 38 113 | [16] | de Mink S E, Langer N, Izzard R G, Sana H and de Koter A 2013 Astrophys. J. 764 166 | [17] | Marsh T R, Nelemans G and Steeghs D 2004 Mon. Not. R. Astron. Soc. 350 113 | [18] | Lubow S H and Shu F H 1975 Astrophys. J. 198 383 | [19] | Paxton B et al 2015 Astrophys. J. Suppl. Ser. 220 15 | [20] | de Jager C, Nieuwenhuijden H and van der Hucht K A 1988 Bulletin d'Information du Centre de Donnees Stellaires 35 141 | [21] | Langer N 1998 Astron. Astrophys. 329 551 | [22] | Paxton B et al 2011 Astrophys. J. Suppl. Ser. 192 3 | [23] | Paxton B et al 2013 Astrophys. J. Suppl. Ser. 208 4 | [24] | de Mink S E, Pols O R and Hilditch R W 2007 Astron. Astrophys. 467 1181 | [25] | Claret A 1999 Astron. Astrophys. 350 56 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|